
Ready Simulation for Concurrency:
It’s Logical!

Gerald Luettgen
Department of Computer Science

University of York

 Talk at the School of Informatics, University of Edinburgh, September 2007. ©2007 Gerald Luettgen

Menu

Appetiser

Brief overview of my current research

Main Course

Concurrency-theoretic foundations of
heterogeneous design notations

Desert

Potential synergies with SICSA themes

Appetiser: Overview of My Current Research

Concurrency theory:
Observation - gap between software engineering practice and
mathematical foundations

Practice: Mix of different specification/design styles; e.g., UML
combines state machines (operational style) and OCL (declarative)

Foundations: Investigation of pure theories, e.g., process algebras
and temporal logics

Current EPSRC-funded research project, with BAE Systems and
Rance Cleaveland (U. Maryland, USA) as collaborators

A calculus that combines process-algebraic and logic operators,
together with a refinement-based semantic theory

Stateflow with “contracts” (temporal safety properties), equipped
with “refinement patterns” (inequational laws)

Further Active Research Areas

Automated verification:

Efficient symbolic model checking for asynchronous systems
[FMSD 31(1), TACAS’07, ICATPN’07]

Parallelising such model checkers on multi-core PCs [CAV’07,
PDMC’07]

EPSRC funded; collaborators Gianfranco Ciardo (UC Riverside,
USA) and Radu Siminiceanu (NASA/NIA, USA)

Synchronous languages (Statecharts, Esterel, etc.):

First fully abstract semantics, based on intuitionistic logic
[ACM TOCL 3(1)]

Joint work with Michael Mendler (U. Bamberg, D)

Main Course

Long-term goal:

Mixing process algebras and temporal logics in a single
refinement-based theory

This talk:

Presents the setting of Logic Labelled Transition Systems

Shows that ready simulation is fully abstract when considering
both conjunction and parallel composition on Logic LTS

Investigates logic properties of ready simulation

Reports on joint work with Walter Vogler (U. Augsburg, D);
details in [TCS 373(1-2), FOSSACS’06, ICALP’07]

Setting - Logic LTS

LTS over alphabet that includes the silent action τ, plus:

τ-purity

Each state encodes either external choice or internal choice

Inconsistency predicate F on states

Inconsistencies can arise by conjunctive composition

Runs through inconsistent states are semantically filtered out

Inconsistencies can propagate backwards along transitions ...

a ba τ ττ

Backward Propagation of Inconsistencies

Propagation - If the environment insists on
performing a, the process is forced to enter
the inconsistent state

a b

F

F

a b

F

a
No propagation - While the environment can
insist on a, the process can decide to perform
the “good a”

τ τ

F b

No propagation - The process decides on its
own which τ-branch to follow (“disjunction”)

Conjunction on Logic LTS

Synchronous composition, but considering inconsistencies

Inconsistency ⇔ different ready sets, i.e., if one process
offers an action that the other cannot perform

Examples:

a

p
∧

b

q
=

a b

r

a

p
∧=F

p’
∧

a a

q’

a b

= F=
a

F

a

F

F =

backward propagation

Ready-Tree Semantics
(cf. Possible-Worlds Semantics of [Veglioni/De Nicola, van Glabbeek])

Ready tree t of LTS p

Deterministic, tree-shaped LTS without τ’s (stable states only)

Mapping h from states of t to stable states of p, which must
preserve ready sets

Example:

a

c d

b b b

x

c d

a a

b

x

t

a

c d

b

p

b

x

b b

x

c d

a a‘natural’ h

Full Abstraction wrt. Conjunction [FOSSACS’06]

Ready-tree preorder:

p ≤RT q if ∀t. t is ready tree of p ⇒ t is ready tree of q

Lies between failures inclusion and ready simulation

Inconsistency preorder (as reference point):

p ≤F q if p consistent ⇒ q consistent

A consistent implementation p does never refine an inconsistent
specification q (“inconsistent requirements can never be satisfied”)

Full-abstraction result:

≤RT is the largest precongruence wrt. ∧ in ≤F , i.e.,
p ≤RT q if and only if ∀r. p ∧ r ≤F q ∧ r

Parallel Composition on Logic LTS

Parallel composition ||A as in CSP but with

τ’s done first, in order to preserve τ-purity

p||Aq inconsistent if p inconsistent or q inconsistent

Compositionality defect of the ready-tree preorder:

a a

b b

x

p

a

b b

x

q

=RT

c d

b b

r

“parallel context”

Compositionality Defect Illustrated

a

c d

b

q||{b}r

b

x

b b

x

c d

a a

c

d

b

p||{b}r

x

b b

x

a a

dc

d

b

ca
a a

a
≠RT

a

c d

b b b

x

c d

a a

b

x

‘na
tu

ra
l’
h

The red state
cannot be mapped!

Ready Simulation & Full Abstraction

Adaptation of ready simulation [Bloom/Istrail/Meyer, 1995] to
Logic LTS, i.e., p ≤RS q if

Consistent steps of p can be matched by consistent steps of q

Stable states of p are matched by stable states of q that offer
the same ready set

Full-abstraction result:

≤RS is the largest precongruence wrt. ∧ and ||A in ≤F

It suffices in the proof to relate ≤RS to ≤RT , given the previous
full-abstraction result ...

Encode a process p’s full behaviour by a ready tree ∂(p)

La.: ∂(p) is a ready tree of p||{a,b,c}∂(p) =

Some Insight Into the Full-Abstraction Proof

x y
0

b
ca

1 2 4

b
ca

1 2 3

a c
0

c
1 2 43

b
∂: unwinding +

determinising

x y
00

b
ca

11 22 4333

c b
ca

11 22 4434

c

“fresh”

Logic Properties of Ready Simulation

∧ is ‘and’:

r ≤RS p ∧ q if and only if r ≤RS p and r ≤RS q

Note that this does not hold if ∧ is simply taken to be the
synchronous product

Further properties:

p ∧ q =RS p if and only if p ≤RS q

p ∧ q ≤RS p

p ∧ p =RS p

p ∧ ff =RS ff (ff is Logic LTS with a single, inconsistent state)

Conclusions & Current/Future Work

Ready simulation is “logical”!

Logic LTS is suitable for modelling and reasoning about
specifications given in a mixed operational and logic style

Extensions:

Adding process-algebraic operators, e.g., external choice (p⟡q)
and CSP-style hiding (p/h)

Adding logic operators, e.g., disjunction (p∨q - internal choice)
or release (p R q - temporal safety property)

Adding recursion operators (μx.p, νx.p)

Investigating axiomatisations

Desert: Potential Synergies with SICSA Themes

Application-oriented
foundational research in

interacting systems

Modelling & reasoning about Internet services

Ana
lys

ing
 “a

uto
mati

on
sur

pri
ses

” Component models for reactive,

synchronous languages

My research lies within Theme 3:
Focuses on abstract modelling and reasoning

Advocates compositional methods for dealing with complexity

Potential Synergies with SICSA Themes

Application-oriented
foundational research in

interacting systems

Modelling & reasoning about Internet services

Ana
lys

ing
 “a

uto
mati

on
sur

pri
ses

” Component models for reactive,

synchronous languages

Synergy with Theme 1 - Internet Services:
Application of my work on multi-clock process algebra to the
orchestration of peer-to-peer web services; challenge lies in
extending this work to mobility and data

Potential Synergies with SICSA Themes

Application-oriented
foundational research in

interacting systems

Modelling & reasoning about Internet services

Ana
lys

ing
 “a

uto
mati

on
sur

pri
ses

” Component models for reactive,

synchronous languages

Synergy with Theme 2 - Human Information Interface:
Previous experience gained at NASA/ICASE with applying
model checking to analysing sources of mode confusion
related to cockpit automation

Potential Synergies with SICSA Themes

Application-oriented
foundational research in

interacting systems

Modelling & reasoning about Internet services

Ana
lys

ing
 “a

uto
mati

on
sur

pri
ses

” Component models for reactive

languages

Synergy with Theme 4 - Systems of Systems:
Interoperability of reactive languages, based on reactive types
Co-ordination of synchronous reactive components via an
asynchronous communications layer (GALS)

Thank You for Listening!

Application-oriented
foundational research in

interacting systems

Modelling & reasoning about Internet services

Ana
lys

ing
 “a

uto
mati

on
sur

pri
ses

” Component models for reactive

languages

Questions?

