Ready Simulation for Concurrency: It's Logical!

<u>Gerald Luettgen</u> Department of Computer Science University of York

Talk at the School of Informatics, University of Edinburgh, September 2007.

©2007 Gerald Luettgen

Menu

Appetiser

Brief overview of my current research

Main Course

Concurrency-theoretic foundations of heterogeneous design notations

Desert

Potential synergies with SICSA themes

Appetiser: Overview of My Current Research

Concurrency theory:

- Observation gap between software engineering practice and mathematical foundations
 - Practice: Mix of different specification/design styles; e.g., UML combines state machines (operational style) and OCL (declarative)
 - Foundations: Investigation of pure theories, e.g., process algebras and temporal logics
- Current <u>EPSRC-funded</u> research project, with BAE Systems and Rance Cleaveland (U. Maryland, USA) as collaborators
 - A calculus that combines process-algebraic and logic operators, together with a refinement-based semantic theory
 - Stateflow with "contracts" (temporal safety properties), equipped with "refinement patterns" (inequational laws)

Further Active Research Areas

Automated verification:

- Efficient symbolic model checking for asynchronous systems [FMSD 31(1), TACAS'07, ICATPN'07]
- Parallelising such model checkers on multi-core PCs [CAV'07, PDMC'07]
- EPSRC funded; collaborators Gianfranco Ciardo (UC Riverside, USA) and Radu Siminiceanu (NASA/NIA, USA)
- Synchronous languages (Statecharts, Esterel, etc.):
 - First fully abstract semantics, based on intuitionistic logic [ACM TOCL 3(1)]
 - Joint work with Michael Mendler (U. Bamberg, D)

Main Course

 Mixing process algebras and temporal logics in a single refinement-based theory

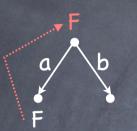
- Presents the setting of Logic Labelled Transition Systems
- Shows that ready simulation is fully abstract when considering both conjunction and parallel composition on Logic LTS
- Investigates logic properties of ready simulation
- Reports on joint work with Walter Vogler (U. Augsburg, D); details in [TCS 373(1-2), FOSSACS'06, ICALP'07]

Setting - Logic LTS

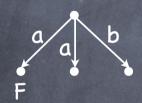
LTS over alphabet that includes the silent action τ , plus:

⊘ T-purity

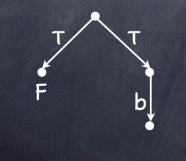
Each state encodes either external choice or internal choice


Inconsistency predicate F on states

Inconsistencies can arise by conjunctive composition

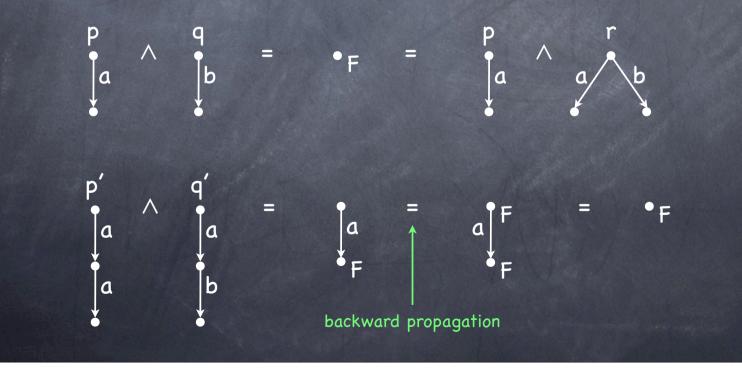

Runs through inconsistent states are semantically filtered out

Inconsistencies can propagate backwards along transitions ...


Backward Propagation of Inconsistencies

Propagation – If the environment insists on performing a, the process is forced to enter the inconsistent state

No propagation – While the environment can insist on a, the process can decide to perform the "good a"

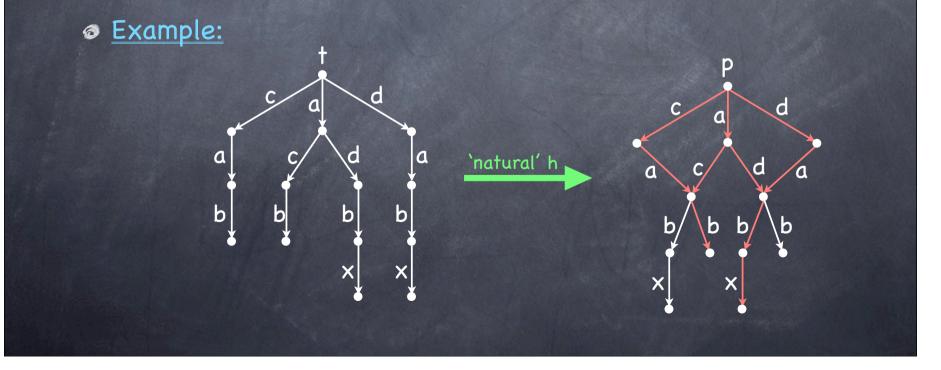

No propagation – The process decides on its own which T-branch to follow ("disjunction")

Conjunction on Logic LTS

Synchronous composition, but considering inconsistencies
 Inconsistency

 different ready sets, i.e., if one process offers an action that the other cannot perform

© Examples:



Ready-Tree Semantics

(cf. Possible-Worlds Semantics of [Veglioni/De Nicola, van Glabbeek])

Ready tree t of LTS p

- Deterministic, tree-shaped LTS without τ 's (stable states only)
- Mapping h from states of t to stable states of p, which must preserve ready sets

Full Abstraction wrt. Conjunction [FOSSACS'06]

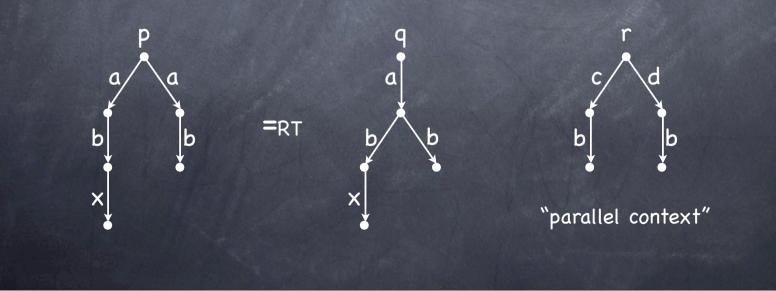
Ready-tree preorder:

Inconsistency preorder (as reference point):

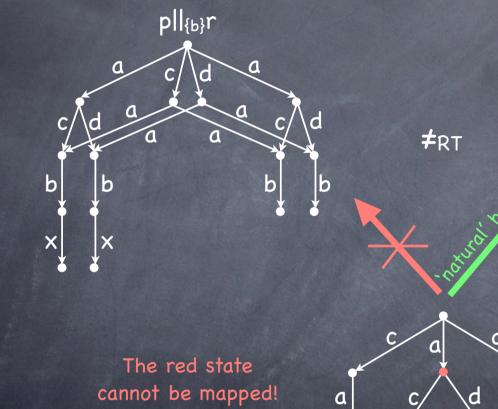
ø p ≤_F q if p consistent ⇒ q consistent

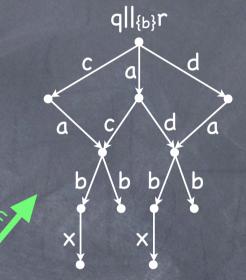
 A consistent implementation p does never refine an inconsistent specification q ("inconsistent requirements can never be satisfied")

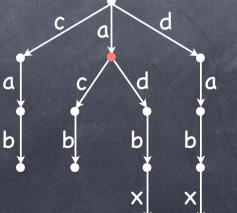
Full-abstraction result:


Parallel Composition on Logic LTS

 \odot Parallel composition $||_A$ as in CSP but with


 \odot T's done first, in order to preserve T-purity


pllAq inconsistent if p inconsistent or q inconsistent

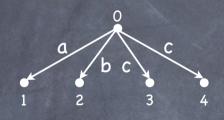

Compositionality defect of the ready-tree preorder:

Compositionality Defect Illustrated

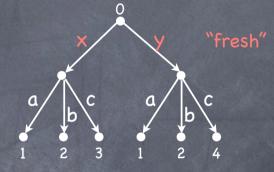
Ready Simulation & Full Abstraction

 Adaptation of ready simulation [Bloom/Istrail/Meyer, 1995] to Logic LTS, i.e., p ≤_{RS} q if

Consistent steps of p can be matched by consistent steps of q


Stable states of p are matched by stable states of q that offer the same ready set

Full-abstraction result:


The proof to relate ≤_{RS} to ≤_{RT}, given the previous full-abstraction result ...


Some Insight Into the Full-Abstraction Proof

 \odot Encode a process p's full behaviour by a ready tree $\partial(p)$

∂: unwinding + determinising

Logic Properties of Ready Simulation

\odot \land is `and':

 \circ r \leq_{RS} p \land q if and only if r \leq_{RS} p and r \leq_{RS} q

Note that this does <u>not</u> hold if \land is simply taken to be the synchronous product

Further properties:

 \bigcirc p ∧ q =_{RS} p if and only if p ≤_{RS} q

 $\bigcirc p \land p =_{RS} p$

o p \wedge ff =_{RS} ff (ff is Logic LTS with a single, inconsistent state)

Conclusions & Current/Future Work

Ready simulation is "logical"!

Logic LTS is suitable for modelling and reasoning about specifications given in a mixed operational and logic style

Section Extensions:

- Adding process-algebraic operators, e.g., external choice (p□q) and CSP-style hiding (p/h)
- Adding logic operators, e.g., disjunction (p\q internal choice) or release (p R q - temporal safety property)
- Adding recursion operators (μx.p, vx.p)
- Investigating axiomatisations

Desert: Potential Synergies with SICSA Themes

Application-oriented foundational research in interacting systems

My research lies within Theme 3:

- Focuses on abstract modelling and reasoning
- Advocates compositional methods for dealing with complexity

Potential Synergies with SICSA Themes

Application-oriented foundational research in interacting systems

Modelling & reasoning about Internet services

Synergy with Theme 1 – Internet Services:

Application of my work on multi-clock process algebra to the orchestration of peer-to-peer web services; challenge lies in extending this work to mobility and data

Potential Synergies with SICSA Themes

Analysing automation surprises' Analysing automation Application-oriented foundational research in interacting systems

Modelling & reasoning about Internet services

Synergy with Theme 2 – Human Information Interface:

Previous experience gained at NASA/ICASE with applying model checking to analysing sources of mode confusion related to cockpit automation

Potential Synergies with SICSA Themes

Application-oriented foundational research in interacting systems

Modelling & reasoning about Internet services

Synergy with Theme 4 – Systems of Systems:

- Interoperability of reactive languages, based on reactive types
- Co-ordination of synchronous reactive components via an asynchronous communications layer (GALS)

Thank You for Listening!

Analysing outomation surprises' Component models for reacting systems

Modelling & reasoning about Internet services

Questions?