
When 1 Clock Is Not Enough

Gerald L̈uttgen, University of York, UK
Michael Mendler, University of Bamberg, Germany

Abstract

Sometimes single–clock timed process algebras are insufficient for modelling systems
in practice. For example, this is the case for systems–on–chip where a single clock cannot
be physically implemented with the required accuracy, or globally–asynchronous locally–
synchronous systems that are spatially distributed. This note revisits the few published
approaches to multi–clock timed process algebras, namely PMC, CSA and CaSE which
are all based on Nicollin and Sifakis’ ATP and extend Milner’s CCS. In contrast to timed
automata and continuous–time process algebra, these algebras treat time as a qualitative
rather than a quantitative concept: a clock is taken to be a synchronisation event with
limited scope, orchestrating the computations conducted within its scope into a well–
defined sequence of successive clock phases. However, PMC, CSA and CaSE differ in
the choice of operators and semantic features; these shall be discussed here with the help
of a novel, unified semantic framework.

1 Unified Semantic Framework

LetC andA be sets ofclocksandactions, respectively, withA containing the special internal
actionτ. Clocksσ ∈C synchronise in a broadcast fashion as in CSP, while actionsa,a,τ ∈A
follow the handshake scheme of CCS.

The amount of computation sandwiched between two ticks ofσ into a clock phase is
variable and depends on the willingness of a process to accept a clock tick at a given state.
We refer to this willingness to end a clock phase asstability and to the complement notion as
instability. There are two kinds of instability:unconditionalandconditionalinstability, which
are controlled both by a process and its environment. Regarding unconditional instability, any
sub–process contributing towards a particular clock phase may hold upσ for that phase, by
remainingunstableuntil its part of the computation is completed. Regarding conditional
instability, the clock phase may also be extended byurgentcommunications pending inside
the scope ofσ . Whether or not a communication is urgent forσ may depend on the local
states of the participating processes. This localised priority scheme, known aslocal maximal
progress, is one of the main features distinguishing synchronising clocks from the broadcast
actions of CSP. Another istime determinism, which is common to all timed process algebras.

Our unified semantic domainP of multi–clock processes is defined as follows. A multi–
clock process is a labelled transition systemp = (Ap,Cp,actp,clkp,Σp,Πp) ∈ P of initial
actionsAp⊆A andinitial clocksCp⊆C , thetransition relationsactp : Ap→ 2P for actions



andclkp : Cp → P for clocks, together with aninstability setΣp ⊆ C \Cp and anurgency

relation Πp : Ap → 2C . Transitions may be written more suggestively asp
γ→ p′ when p′ ∈

actp(γ) or p′ = clkp(γ), whereγ ∈ Ap∪Cp. The instability setΣp comprises all clocks for
which p is unstable and which are thus held up byp, i.e., Σp∩Cp = /0. SetCp includes
the clocks for whichp defines a deterministic initial transition. Hence, the set of clocks
on which p synchronises with its environment isΣp∪Cp. Clocks outside ofΣp∪Cp are
independent in thatp neither stops them, nor reacts to them by changing state. Theurgency
relation Πp associates with every actionα ∈ Ap, a setΠp(α) ⊆ C of clocks in whose scope
an occurrence ofα takes place, i.e.,σ ∈ Πp(α) means that initial actionα has higher priority
than clockσ , so thatσ is permitted to proceed only if the environment cannot communicate
on α. As a special case,σ is blocked outright ifσ ∈ Πp(τ) for the internal actionτ ∈
Ap (a complete communication). This is a special form of unconditional instability, whence
Πp(τ) ⊆ Σp, which is also known asmaximal progress.

A multi–clock process algebra defines algebraic operators for specifying semantic struc-
turesp= (Ap,Cp,actp,clkp,Σp,Πp). One natural starting point is the standard syntax of CCS
consisting of the nil process0, prefixingα.p, summationp+q, parallel compositionp|q, re-
striction p\a and recursionµx. p. The standard operator for specifying clock transitions is
thetimeoutbpcσ(q) introduced with ATP [5]. It behaves likep for all actions and clock tran-
sitions different fromσ . For σ it adds a clock transition toq (the “timeout step”), provided
that p cannot engage in an urgent initialτ. All σ–transitions that may exist inp are pruned.

2 Controlling Clock Phasing

In the following we review the design decisions taken by the multi–clock process algebras
PMC [1], CSA [2] and CaSE [7] and show how they fit into our unified semantic framework.
The design choices relate to whether clock phasing is controlled explicitly or implicitly.

2.1 Explicit Control of Clock Phasing

Explicit control means that clock phasing is made explicit by the placement of timeout op-
erators. In this scheme, such as employed in ATP [5] or PMC [1], clock phases are defined
entirely by instability of processstate, i.e., by way of the setsΣp. Clocks are stopped by
default and thus cannot tick unless specified explicitly. Time progress is controlled locally by
inserting clock ticks only in those (stable) states of a process where the process has finished
all computations that are due to happen within the current clock phase.

As a consequence, processes are unstable for all clocks unless defined otherwise via time-
outs. In particular, for action prefixesα.p and nil 0 one putsΣα.p=df Σ0=df C , whereas
Σbpcσ(q) =df Σp\{σ} for timeoutsbpcσ(q). Since prefixes stop all clocks, they are calledin-
sistent. For pure CCS processes we haveΣp = C andCp = /0, while in general timed processes
satisfyΣp = C \Cp, whereCp arep’s initial clock transitions specified by timeouts.

In a pure language of insistent prefixing, the urgency relations play no role and are fixed
asΠp(α)=df /0, for all α ∈ Ap. Since they never preempt any clock transition, actions are
referred to aspatient. In this combination of insistent prefixing with patient actions commu-
nication through actions and clocks are independent concepts.



2.2 Implicit Control of Clock Phasing

The other option is to control clock phasing implicitly, by way ofaction urgencyandmaximal
progress, such as in CSA [2] and CaSE [7]. Here, it is not a decision of an individual process
state if a clock is to be stopped but a feature of its interaction. A processp can adjust the
urgency relationΠp by specifying which actions are to fall within which clock regime. This
is done via clock scoping and clock hiding operators.

Clock scoping and hiding. Suppose a subsystemp that runs under the regime of a clockσ

is to be integrated into a larger systemq, forming p|q. If clock σ is to run independently of
the parallel contextq, it needs to be decoupled. There are several solutions for making sure
thatσ insidep is not blocked byq. The first technique employed in PMC and CSA is to use
an explicit staticignoreoperatorq↑σ that addsσ–loops at all states reachable byq. This has
the effect thatσ cannot be used insideq since allσ–transitions are overridden. If its use is
required, one may opt forhiding clock σ insideq, which turnsσ into a non–synchronising
action. This closes offq with respect to synchronisations onσ and preserve these to the
outside. Hidingq/σ in CaSE [7] uses the urgent non–synchronising actionτ for this, while
hidingq〈σ〉 in CSAch

att [4] introduces a new patient non–synchronising actionι .
Since clock scopesΠp are relations between initial actions and clocks, it is natural to start

with a default scope at the point where actions are introduced, i.e., with prefixes. This can
be managed in two ways. Firstly, we can assume that every action is maximally urgent and
hence in the scope of every clock, until it isdetachedexplicitly through other operators. This
is done in CSA [2] where ignorep↑σ turns all initial actions patient forσ , i.e., Πp↑σ (α) =
Πp(α) \ {σ} for all α ∈ Ap. Secondly, we can dually start with patient actions outside the
scope of any clock and then useattachoperators to bring them within the regime of a clock.
This technique was introduced with CSAch

att [4] where the attach operatorp@σ is defined so
thatΠp@σ (α)=df Πp(α)∪{σ}.

Maximal progress. The urgency relation is then used to implement the maximal progress
assumption. This is essentially done via an operational rule demanding that the parallel com-
positionp|q can engage in a clock transition only (i) if both processesp,q can and (ii) if there
is no handshake communication possible between some actiona and its complementa within
the scope ofσ , i.e.,σ /∈ Πp(a)∩Πp(a). For a single clock this is the classic form ofglobal
maximal progress employed in TPL [3], whereas for multiple clocks with clock scoping we
obtain the refined form oflocal maximal progress introduced with CSA [2].

Pure systems with urgent actions and maximal progress, such as TPL and CSA, typically
take arelaxedview on process stability. A processp is stable for each clock unless it is pre-
empted by aτ–transition in its scope, i.e.,Σp = /0 in caseτ /∈ Ap, andΣp = Πp(τ) otherwise.
In TPL and CSA the instability setΣp is modelled indirectly by clockself–loops.

In settings with maximal progress and employing a semantics based on observational
equivalence,τ–loops can be used to stop clocks in specific process states [4]. Alternatively,
this can be done using customisedtime–stopoperators whose semantics directly influence the
instability setΣp. Time stops, if judiciously inserted into a process, can be used for modelling
the violation of real–time constraints in system verification, as shown in [7].



3 Summary and Challenges

The above design choices leave a large design space for defining multi–clock process algebras.
Only a few points within this design space have so far been studied:

PMC = insistent prefixing + ignore + no maximal progress [1]
CSA = relaxed prefixing + ignore + local maximal progress [2]
CSAch

att = relaxed prefixing + attach + hiding + local maximal progress [4]
CaSE = relaxed prefixing + time stop + hiding + global maximal progress [7]

Technical achievements include (i) a complete axiomatisation of strong bisimulation for regu-
lar processes in PMC and CSA, (ii) a fully–abstract characterisation ofobservational congru-
encein PMC, CSA and CaSE, and (iii) a complete axiomatisation of observational congruence
for finiteprocesses in PMC. Work on similar results for CaSE will be included in [6].

Future work should complete these theories by providing axiomatic characterisations of
the observational congruences forregular processes. The challenge here is that the standard
completeness–proof technique (Milner) is not generally applicable. This is because in the
presence of time determinism, unguarded recursion can only be eliminated in the very special
case of global maximal progress. For example, the PMC processµx.bτ.bτ.xcσ(b.0)cσ(a.0)
cannot be expressed without unguarded recursion [1].

A second challenge lies in exploring the sketched design space more fully and in general
terms, rather than theories for particular points in this space. This should take into account
ongoing efforts in the area of synchronous programming, such as defining a semantics for
multi–clock Esterel.

Last, but not least, semantics other than those founded on bisimulation, such asfailure
semantics ortestingsemantics, should to be studied for multi–clock process algebras. To the
best of our knowledge, this has not yet been done. The challenge here is to lift the approaches
incorporated in Timed CSP and TPL from a single clock to multiple clocks, which is a task
that can profit from the unified semantic framework sketched in this note.

References
[1] H.R. Andersen and M. Mendler. An asynchronous process algebra with multiple clocks. In

ESOP ’94, vol. 788 ofLNCS, pp. 58–73.

[2] R. Cleaveland, G. L̈uttgen, and M. Mendler. An algebraic theory of multiple clocks. InCON-
CUR ’97, vol. 1243 ofLNCS, pp. 166–180.

[3] M. Hennessy and T. Regan. A process algebra for timed systems.Information and Computation,
117:221–239, 1995.

[4] M. Kick. Modelling synchrony and asynchrony with multiple clocks. Master’s thesis, University
of Passau, 1999.

[5] X. Nicollin and J. Sifakis. The algebra of timed processes, ATP: Theory and application.Informa-
tion and Computation, 114:131–178, 1994.

[6] B. Norton. A Process Algebraic Theory for Synchronous Software Composition. PhD thesis,
University of Sheffield. To be submitted in June 2005.

[7] B. Norton, G. L̈uttgen, and M. Mendler. A compositional semantic theory for synchronous
component-based design. InCONCUR 2003, vol. 2761 ofLNCS, pp. 461–476.


