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Abstract

Interface theories are employed in the component-based design of concurrent
systems. They often emerge as combinations of Interface Automata (IA) and
Modal Transition Systems (MTS), e.g., Nyman et al.’s IOMTS, Bauer et al.’s
MIO, Raclet et al.’s MI or our MIA. In this paper, we generalise MI to non-
deterministic interfaces, for which we properly resolve the longstanding conflict
between unspecified inputs being allowed in IA but forbidden in MTS. With
this solution we achieve, in contrast to related work, an associative parallel
composition, a compositional preorder, a conjunction on interfaces with dis-
similar alphabets supporting perspective-based specifications, and a quotienting
operator for decomposing nondeterministic specifications in a single theory. In
addition, we define a hiding and a restriction operator, complement conjunction
with a disjunction operator and illustrate our interface theory by means of a
simple example.

Keywords: Interface Theories, Modal Interface Automata, Component Based
Design, Modal Transition Systems, Disjunctive Must-Transitions

1. Introduction

Interface theories support the component-based design of concurrent sys-
tems and o↵er a semantic framework for, e.g., software contracts [2] and web
services [3]. Several such theories are based on de Alfaro and Henzinger’s Inter-
face Automata (IA) [4], whose distinguishing feature is a parallel composition5

on labelled transition systems with inputs and outputs, where receiving an un-
expected input is regarded as an error, i.e., a communication mismatch. In
so-called pessimistic interface theories [5], a parallel composition of components
is not defined, if such a mismatch occurs. In optimistic theories [6, 7, 8, 9, 10],

IAn extended abstract of this paper appeared in [1].
IIResearch support was provided by the DFG (German Research Foundation) under

grants LU 1748/3-1 and VO 615/12-1.
Email addresses: ferenc.bujtor@informatik.uni-augsburg.de (Ferenc Bujtor),

sascha.fendrich@swt-bamberg.de (Sascha Fendrich), gerald.luettgen@swt-bamberg.de
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such as the ones we consider here, a communication mismatch is acceptable as10

long as the system environment prevents that it can be reached; technically, all
those states of the parallel composition are pruned from which entering an error
state cannot be prevented by any so-called helpful environment.

Various researchers have combined IA with Larsen’s Modal Transition Sys-
tems (MTS) [11], featuring may- and must-transitions to express allowed and15

required behaviour, resp. In a refinement of an interface, all required behaviour
must be preserved and no disallowed behaviour may be added. Whereas in IA
outputs are optional, they may now be enforced in theories combining IA and
MTS, such as Nyman et al.’s IOMTS [8], Bauer et al.’s MIO [5], Raclet et al.’s
Modal Interfaces (MI) [10] and our Modal Interface Automata (MIA) [9, 12]. In20

this article we extend MI to nondeterministic systems, yielding the most general
approach to date and permitting new applications, since nondeterminism arises,
e.g., from races in networks. We build upon our prior work in [12], from which we
adopt disjunctive must-transitions, which are needed for operationally defining
conjunction on interfaces. Conjunction is a key operator in interface theories,25

supporting perspective-based specification and corresponding to the greatest
lower bound wrt. refinement. We also consider the dual disjunction operator.

Combining IA and MTS is, however, problematic due to a conflict between
unspecified inputs being forbidden in MTS but allowed in IA with arbitrary
behaviour afterwards. In IOMTS [8], the MTS-view was adopted and, as a30

consequence, compositionality of refinement wrt. the parallel operator was lost.
In [12] we followed the IA-view but found that reconciling the two views is
essential for a more flexible conjunction. Flexibility is needed regarding the
alphabets of the conjuncts that are to be composed; intuitively, each conjunct
models a di↵erent perspective (i.e., a single system requirement) that only refers35

to the actions relevant to that perspective.
Here, we propose a middle way to reconcile the IA- and MTS-views by

adding the option to treat an input i in a state p according to the IA-approach:
If i should be allowed with subsequent arbitrary behaviour, we add an i-may-
transition from p to a special universal state e that can be refined in any way. We40

need this option, in particular, when defining parallel composition. In contrast,
if there is no i-transition originating in p, then i is forbidden in p according
to the MTS-view. The idea behind e is similar to the one presented for MI
in [10], where an ordinary state that has a may-loop for each action is added to
a parallel composition. This way, however, associativity of parallel composition45

is lost. We avoid this problem since e is treated specially in our notion of
refinement, which has far reaching consequences for many of the proofs; see
Sec. 3.2 for a more detailed discussion of e. Now, with the universal state e
and unlike the approach in [9, 12], our interface theory, which we continue to
call MIA, allows for a proper distinction between may- and must-transitions for50

inputs. This enables us to define the desired, more flexible conjunction using a
simple alphabet extension mechanism in the sense of [10].

Our proposed reconciliation results in an interface theory that generalises
the fully deterministic MI, where also internal actions are forbidden, to nonde-
terministic interfaces. Unlike IA and our previous work [9, 12], we also do away55
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with determinism on input-transitions. As in MI, our MIA theory is equipped
with a multicast parallel composition, where one output can synchronise with
several inputs. This is accompanied by hiding and restriction operators for scop-
ing actions [13, 14]. Parallel composition and hiding together (cf. [15]) are more
expressive than the binary parallel composition of IA used in [5, 8, 9, 12]. We60

also develop a quotienting operator // as a kind of inverse of parallel composi-
tion k. For a specification P and a given component D, quotienting constructs
the most general component Q such that QkD refines P . Quotienting is a practi-
cal operator: it can be used for decomposing concurrent specifications stepwise,
specifying contracts [16] and reusing components. In contrast to [10], our quoti-65

enting permits nondeterministic specifications and complements k rather than
a simpler parallel product without pruning.

In summary, our new interface theory MIA generalises and improves upon
existing theories combining IA and MTS: parallel composition is commutative
and associative (cf. Sec. 3), quotienting also works for nondeterministic specifi-70

cations (cf. Sec. 4), conjunction properly reflects perspective-based specification
(cf. Secs. 5 and 6), and refinement (cf. Sec. 2) is compositional and permits
alphabet extension (cf. Sec. 6). We illustrate the utility of MIA by means of a
simple example (cf. Sec. 7).

2. Modal Interface Automata: The Setting75

In this section we defineModal Interface Automata (MIA) and the supported
operations. Essentially, MIAs are state machines with disjoint input and output
alphabets, as in Interface Automata (IA) [4], and two transition relations, may
and must, as in Modal Transition Systems (MTS) [11]. May-transitions describe
permitted behaviour, while must-transitions describe required behaviour. Un-80

like previous versions of MIA [9, 12] and also unlike other similar theories, we
introduce a special universal state e capturing arbitrary behaviour.

Definition 1 (Modal Interface Automata). A Modal Interface Automaton
(MIA) is a tuple (P, I,O,�!, 99K, p0, e), where

• P is the set of states including the initial state p0 and the universal state e,85

• I and O are disjoint sets, the alphabets of input and output actions, not
containing the special internal action ⌧ , and A =df I [ O is called the
alphabet,

• �!✓ P⇥(A[{⌧})⇥(P(P )\;) is the disjunctive must-transition relation,
with P(P ) being the powerset of P ,90

• 99K✓ P ⇥ (A [ {⌧})⇥ P is the may-transition relation.

We require the following conditions:

1. For all ↵ 2 A [ {⌧}, p ↵�! P 0 implies 8p02P 0. p
↵99K p0 (syntactic consis-

tency),
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2. e appears in transitions only as the target state of input may-transitions95

(sink condition).

A MIA P is called universal if P = ({e}, I, O, ;, ;, e, e) for alphabets I, O.

Cond. 1 states that whatever is required should be allowed; this syntactic con-
sistency is a natural and standard condition (see [11]). Regarding Cond. 2,
recall that we use e to express that an input is optional in some state, with100

arbitrary behaviour afterwards. Note that there might very well be ordinary
states without any outgoing transitions for some input i; in other words, a MIA
does not have to be input-enabled like the IO-Automata in [15].

Observe that our disjunctive must-transitions have a single label, in contrast
to Disjunctive MTS (DMTS) [17]. In the context of MTS, this is su�cient for105

intuitively and compactly representing (a) conjunction, as shown in [9], and (b)
parallel composition, which would otherwise require an indirect definition via,
e.g., Acceptance Automata [18, 19], as suggested in [20]. Our restriction to single
labels does not seem to restrict the expressible sets of implementations, i.e.,
⌧ -free labelled transition systems (LTS), as studied by Fecher and Schmidt [21]110

and Beneš et al. [20], when – analogous to DMTS – allowing arbitrary sets of
initial states in MIAs.

In the following we identify a MIA (P, I,O,�!, 99K, p0, e) with its state
set P and, if needed, use index P when referring to one of its components, e.g.,
we write IP for I. Similarly, we write, e.g., I1 instead of IP1 for MIA P1. In115

addition, we let i, o, a, ! and ↵ stand for representatives of the alphabets I, O,
A, O [ {⌧} and A [ {⌧}, resp.; we write A = I/O when highlighting inputs I
and outputs O in an alphabet A. In the context of weak transitions, we use the
notation ↵̂, where ↵̂ =df a if ↵ = a 6= ⌧ and ↵̂ =df " if ↵ = ⌧ . Furthermore,
outputs and internal actions are called local actions since they can be controlled120

locally by P . For notational convenience, we let p
a�! p0, p 6 a�! and p 6 a99K denote

p
a�! {p0}, @P 0. p

a�! P 0 and @p0. p a99K p0, resp. In figures, we often refer to
an action a as a? if a 2 I, and a! if a 2 O. Must-transitions (may-transitions)
are drawn using solid, possibly splitting arrows (dashed arrows); any depicted
must-transition also implicitly represents the underlying may-transition(s) due125

to syntactic consistency.
We now define weak must- and may-transition relations that abstract from

transitions labelled by ⌧ , as is needed for MIA refinement. It is an alternative,
more general definition than the one presented in [12]. In [12] and [1], we have
failed to notice that our conjunction operator applied to infinite MIAs can result130

in infinite target sets of disjunctive must-transitions (Rules (OMust), (IMust)
in Def. 32; see p. 34 for an example of this). Consequently, we now allow such
target sets in Def. 1 above. As a consequence, we modify also the definition of
weak transitions; in order to derive adequate weak must-transitions, they are
built up back-to-front.135

Definition 2 (Weak Transition Relations). For an arbitrary MIA P , we define
weak must- and may-transition relations, =) and =) resp., as the smallest
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Figure 1: Examples of weak transitions and refinement.

relations satisfying the following conditions, where we write P 0 ↵̂
=) P 00 as a

shorthand for 8p 2 P 0 9Pp. p
↵̂

=) Pp and P 00 =
S

p2P 0 Pp:

1. p
"

=) {p} for all p 2 P ,140

2. p
⌧�! P 0 and P 0 ↵̂

=) P 00 implies p
↵̂

=) P 00,

3. p
a�! P 0 and P 0 "

=) P 00 implies p
a

=) P 00,

4. p
"

=) p,

5. p
"

=) p00
⌧99K p0 implies p

"
=) p0,

6. p
"

=) p00
↵99K p000

"
=) p0 implies p

↵
=) p0.145

We write
a�! "

=) for transitions that are built up according to Case 3 and call

them trailing-weak must-transitions. Similarly,
a99K "
=) stands for trailing-weak

may-transitions.

For examples of weak transitions, consider the MIA on the left-hand side of
Fig. 1. By applying Def. 2.1 and 2.2, any ⌧ -transition is also a weak "-transition.150

Similarly, every a-transition is also a weak a-transition by Def. 2.1 and 2.3.
Transition 2

⌧�! {4, 5} can be extended to 2
o

=) {7, 8} by applying Def. 2.2.
Hence, 0

⌧�! {1, 2} extends to 0
o

=) {3, 7, 8}. Observe that our weak must-
transitions correspond to standard weak transitions of LTS in the case that only
must-transitions with a single target state are used.155

When reasoning about weak must-transitions, e.g., in Lems. 3 and 21 below,
we consider a derivation of a weak must-transition according to Def. 2 as a tree
and each node as being larger than the nodes from which it is derived. Although
the tree might be infinitely branching, larger-than is a Noetherian partial order.
Hence, one can apply (Noetherian, transfinite) induction on the derivation of a160

weak must-transition.

Lemma 3. Consider an arbitrary MIA P .

(a) p
"

=) P̄ and P̄
↵̂

=) P 0 implies p
↵̂

=) P 0,

(b) p
a

=) P̄ and P̄
"

=) P 0 implies p
a

=) P 0.
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Proof. (a) We proceed by induction on the definition of p
"

=) P̄ . Regarding165

Def. 2.1, the claim is trivial. Now assume that p
"

=) P̄ is due to Def. 2.2, i.e.,
we have p

⌧�! P 00 and, for each p00 2 P 00, there is some P̄p00 with p00
"

=) P̄p00

and P̄ =
S

p002P 00 P̄p00 . By premise P̄
↵̂

=) P 0, some Pp̄ exists for each p̄ 2 P̄

such that p̄
↵̂

=) Pp̄ and P 0 =
S

p̄2P̄ Pp̄. For each p00 2 P 00, P 0
p00 =df

S
p̄2P̄p00

Pp̄

satisfies P̄p00
↵̂

=) P 0
p00 and, by induction hypothesis, p00

↵̂
=) P 0

p00 . By Def. 2.2,170

this implies p
↵̂

=)
S

p002P 00 P 0
p00 . This target set is clearly the union of some Pp̄

with p̄ 2 P̄ ; moreover, each p̄ 2 P̄ is in some P̄p00 , and the target set covers
P 0
p00 ◆ Pp̄. Hence, the target set is P 0 and we are done. The case of Def. 2.3

does not apply.
(b) Similarly to (a), we apply induction on the derivation of p

a
=) P̄ . Case 1175

of Def. 2 does not apply. Case 2 is shown as above, observing that we need p00
a

=)
twice, p̄

"
=), P̄p00

"
=) and p

a
=). Case 3 is also similar to Case 2 in (a), except

that all weak transitions not originating in p are labelled ", and we use (a)
instead of the induction hypothesis.

Now we define our simulation-based refinement relation. It is a weak alternating180

simulation that is conceptually similar to the observational modal refinement
found, e.g., in [22]. A notable aspect, originating from IA [4], is that inputs
must be matched immediately, i.e., only trailing ⌧s are allowed. Intuitively,
this is because of the requirement that a signal sent from one system must
be received immediately; otherwise, it is considered an error (communication185

mismatch). Since one wishes not to introduce new errors during refinement, a
refined system must immediately provide all specified inputs. This is discussed
further in Remark 9.

We treat the universal state e as completely underspecified, i.e., any state
refines it; this is only possible since e is not an ordinary state. Recall that we190

have an i-may-transition from some state p to e to express that, like in the IA-
approach, p can be refined by a state with an i-transition followed by arbitrary
behaviour. We define our refinement preorder for MIAs with common input and
output alphabets here and relax this restriction in Sec. 6.

Definition 4 (MIA Refinement). Let P,Q be MIAs with common input and195

output alphabets. A relation R ✓ P ⇥Q is a MIA-refinement relation if, for all
(p, q) 2 R with q 6= eQ, the following conditions hold:

(i) p 6= eP ,

(ii) q
i�! Q0 implies 9P 0. p

i�! "
=) P 0 and 8p02P 0 9q02Q0. (p0, q0) 2 R,

(iii) q
!�! Q0 implies 9P 0. p

!̂
=) P 0 and 8p02P 0 9q02Q0. (p0, q0) 2 R,200

(iv) p
i99K p0 implies 9q0. q i99K "

=) q0 and (p0, q0) 2 R,

(v) p
!99K p0 implies 9q0. q !̂

=) q0 and (p0, q0) 2 R.
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Figure 2: Example of refining a weak transition.

We write p v q and say that p MIA-refines q, if there exists a MIA-refinement
relation R such that (p, q) 2 R, and we let p wv q stand for p v q and q v p.
Furthermore, we extend these notations to MIAs and write P v Q if p0 v q0205

and use wv analogously.

An example of a refinement can be found in Fig. 1, where the left MIA re-
fines the right one due to the refinement relation {(0, 00), (1, 00), (2, 00), (4, 00),
(5, 00), (3, 10), (7, 10), (8, 10), (6, 20)}. Observe how the refined states 3 and 7
(and 8) of state 10 implement the outgoing i?-may-transition di↵erently.210

For another example, consider the weak transition p0
o

=) P 0 =df {p01, p02, . . .}
of ‘finite but unbounded depth’ in Fig. 2, which arises from our back-to-front
definition (cf. Def. 2). This weak transition is intuitively justified, since each
target of the disjunctive ⌧ -must-transition guarantees o. Technically, each pi
refines q1 and, hence, p0 refines q0 according to Def. 4. Therefore, p0

o
=) P 0 is215

needed to make Prop. 5 (iii) below true for q0
o

=) q01.
As we show next, Lem. 3 allows us to replace the transition in the premises

of (ii) and (iii) above by a trailing weak and a weak one, resp.; the analogous
replacement in (iv) and (v) is standard. This result is needed for proving that
v is a preorder.220

Proposition 5. Let R ✓ P ⇥ Q be a MIA-refinement relation for MIAs P
and Q, and let (p, q) 2 R with q 6= eQ. Then, the following generalisations of
Def. 4(ii)–(v) hold:

(ii) q
i�! "
=) Q0 implies 9P 0. p

i�! "
=) P 0 and 8p02P 0 9q02Q0. (p0, q0) 2 R,

(iii) q
!̂

=) Q0 implies 9P 0. p
!̂

=) P 0 and 8p02P 0 9q02Q0. (p0, q0) 2 R,225

(iv) p
i99K "
=) p0 implies 9q0. q i99K "

=) q0 and (p0, q0) 2 R,

(v) p
!̂

=) p0 implies 9q0. q !̂
=) q0 and (p0, q0) 2 R.

Proof. The proofs of Parts (iv) and (v) are standard; the proof of Part (ii) is
very similar to that of Part (iii), although the third case below is not relevant
for Part (ii); thus, we focus on proving Part (iii) concerning weak disjunctive230

transitions. We proceed by induction on the definition of q
!̂

=) Q0:

• Let ! = ⌧ and Q0 = {q}. Then, we choose P 0 =df {p}.
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• Let q
⌧�! Q̄ and 8q̄ 2 Q̄ 9Qq̄. q̄

!̂
=) Qq̄ with Q0 =

S
q̄2Q̄ Qq̄ according

to Def. 2.2. By assumption, a weak transition p
"

=) P̄ with 8p̄ 2 P̄
9q̄ 2 Q̄. (p̄, q̄) 2 R exists. Choosing for each p̄ 2 P̄ a suitable q̄, we235

get some Pp̄ such that p̄
!̂

=) PP̄ and 8p0 2 Pp̄ 9q0 2 Qq̄. (p0, q0) 2 R by

induction hypothesis. By Lem. 3(a), we obtain p
!̂

=) P 0 =df
S

p̄2P̄ Pp̄.

• Let q
!̂

=) Q0 due to Def. 2.3, i.e., !̂ = o, q
o�! Q̄, 8q̄ 2 Q̄. q̄

"
=) Qq̄ and

Q0 =
S

q̄2Q̄ Qq̄. The proof then proceeds as in the previous case, using
Lem. 3(b).240

Corollary 6. MIA refinement v is a preorder and the largest MIA-refinement
relation.

Proof. Reflexivity immediately follows from the fact that the identity relation
on states is a MIA-refinement relation. For transitivity one shows that the
composition of two MIA-refinement relations is again a MIA-refinement relation,245

using Prop. 5 and following the lines of [14]. The second claim follows since
MIA-refinement relations are easily seen to be closed under union.

3. Parallel Composition and Hiding

Interface Automata (IA) [23, 4] are equipped with an interleaving parallel
operator, where an action occurring as an input in one interface is synchronised250

with the same action occurring as an output in some other interface; the syn-
chronised action is hidden, i.e., labelled by ⌧ . Since our work builds upon Modal
Interfaces (MI) [10] we instead consider here a parallel composition, where the
synchronisation of an interface’s output action involves all concurrently run-
ning interfaces that have the action as input. Moreover, we include a separate255

operator for hiding outputs (cf. [15]). This properly generalises the binary com-
munication of IA to multicast in MIA.

3.1. Parallel Composition

We present a parallel operator k on MIA in the same way as we did in [9, 12],
except that common actions are not hidden immediately. Parallel composition260

is defined in two stages, similarly as in IA. First, a standard product ⌦ between
two MIAs is introduced. Then, errors are identified, i.e., states where an output
is not matched by an appropriate input, and all states from which reaching an
error cannot be prevented are pruned, i.e., removed.

Definition 7 (Parallel Product). MIAs P1, P2 are composable if O1 \O2 = ;.265

For such MIAs we define the product P1 ⌦ P2 = ((P1 ⇥ P2) [ {e12}, I, O,�!,
99K, (p01, p02), e12), where e12 is a fresh state, I =df (I1 [ I2) \ (O1 [ O2) and
O =df O1 [ O2, and where �! and 99K are the least relations satisfying the
following rules:

8



(PMust1) (p1, p2)
↵�! P 0

1 ⇥ {p2} if p1
↵�! P 0

1 and ↵ /2 A2

(PMust2) (p1, p2)
↵�! {p1}⇥ P 0

2 if p2
↵�! P 0

2 and ↵ /2 A1

(PMust3) (p1, p2)
a�! P 0

1 ⇥ P 0
2 if p1

a�! P 0
1 and p2

a�! P 0
2 for some a

(PMay1) (p1, p2)
↵99K (p01, p2) if p1

↵99K p01 and ↵ /2 A2

(PMay2) (p1, p2)
↵99K (p1, p02) if p2

↵99K p02 and ↵ /2 A1

(PMay3) (p1, p2)
a99K (p01, p

0
2) if p1

a99K p01 and p2
a99K p02 for some a.

270

From the parallel product, parallel composition is obtained by pruning, i.e., one
removes errors and states leading up to them via local actions, so called illegal
states. This also cuts all input transitions leading to an illegal state.

In [24] we showed that de Alfaro and Henzinger have defined pruning in an
inappropriate way in [23], such that associativity is violated. We remedied this275

by cutting not only an i-transition from some state p to an illegal state, but
also all other i-transitions from p. Not only did we prove that this is correct,
the solution is also intuitive since, this way, p describes the requirement that a
helpful environment must not produce input i. This requirement is described
in input-deterministic settings like [4] without any remedy.280

Now, in [23, 24], p can be refined by a state with an i-transition and arbitrary
behaviour afterwards. As explained above, we express this by introducing an
i-may-transition to the universal state. This construction is necessary to achieve
compositionality and associativity for parallel composition; see Fig. 10 in [9] for
the compositionality flaw in IOMTS [8] and Fig. 4 for the associativity problem285

in MI [10], resp.

Definition 8 (Parallel Composition). Given a parallel product P1⌦P2, a state

(p1, p2) is a new error if there is some a 2 A1 \A2 such that (a) a 2 O1, p1
a99K

and p2 6 a�!, or (b) a 2 O2, p2
a99K and p1 6 a�!. It is an inherited error if one of

its components is a universal state, i.e., if it is of the form (e1, p2) or (p1, e2).290

We define the set E ✓ P1 ⇥ P2 of illegal states as the least set such that

(p1, p2) 2 E if (i) (p1, p2) is a new or inherited error or (ii) (p1, p2)
!99K (p01, p

0
2)

and (p01, p
0
2) 2 E.

Should the initial state be an illegal state, i.e., (p01, p02) 2 E, then e12
becomes the initial – and thus the only reachable – state of the parallel compo-295

sition P1 k P2. In this case, P1 and P2 are called incompatible.
Otherwise, P1 k P2 is obtained from P1 ⌦ P2 by pruning illegal states as

follows. If there is a state (p1, p2) /2 E with (p1, p2)
i99K (p01, p

0
2) 2 E for some

i 2 I, then all must- and may-transitions labelled i and starting at (p1, p2) are

removed, and a single transition (p1, p2)
i99K e12 is added. Furthermore, all300

states in E, all unreachable states (except for e12) and all their incoming and
outgoing transitions are removed. If (p1, p2) 2 P1 kP2, we write p1 k p2 and call
p1 and p2 compatible.

Observe that the parallel composition of MIAs results in a well-defined MIA.
Firstly, this is true for the parallel product; in particular, e12 does not have any305

transitions at all. Secondly, pruning guarantees that all target sets of must-
transitions are non-empty, and it preserves syntactic consistency and the sink

9



q0Q:

q̄

q0 q00 q000

i?

⌧ i? d!

p0P :

p̄

p00 p000
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q0 k r0Q kR:

q̄ k r0

q0 k r0

eQkR
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⌧

i?

p0 k r0P kR:

ePkR

i?

Figure 3: Illustration of the complications of pruning, where AP = AQ = {i}/{d} and
AR = {d}/;.

condition. As an aside, even if we would not have required the sink condition
in Def. 1, it would be enforced when applying parallel composition. Due to the
universality of e, P1 kP2 is universally refineable if P1 and P2 are incompatible.310

Remark 9. Recall that, in Def. 4, only trailing ⌧s are permitted when match-
ing inputs. This is necessary for input must-transitions in order to avoid addi-
tional errors when refining a component; otherwise, v would not be a precon-
gruence for parallel composition (cf. [4]). We now show that allowing leading
⌧s when matching input may-transitions would render our pruning insu�cient.315

When generalising Def. 4(iv) this way, we would have P v Q in Fig. 3 due
to {(p0, q0), (p̄, q̄), (p0, q0), (p00, q00), (p000, q000)}. Their parallel compositions with
R =df ({r0, eR}, {d}, ;, ;, ;, r0, eR) would, with our current pruning, no longer
be in the refinement relation: q0 k r0 would still have an i-must-transition, while
p0 k r0 would have lost both i-must-transitions during pruning. Thus, v would320

not be a precongruence wrt. parallel composition.
It is possible to repair this by a di↵erent pruning construction. For example,

when cutting i-transitions at some state s, one can go backward from s along
⌧ -transitions and cut all outgoing i-transitions; in the example, q0 k r0 has an i-
transition that is cut and, consequently, we would also remove every i-transition325

originating from q0 k r0 since q0 k r0
"

=) q0 k r0. This di↵erent parallel com-

position fixes the current counterexample as it removes q0 k r0
i�! q̄ k r0 and

its underlying may-transition, replacing them with an i-may-transition to the
universal state. However, defining a general fix is much more involved since
backward and forward propagation along ⌧s is necessary. This can be seen with330

a simple modification of the above example; just move the d-transition from
state p00 to p̄ and from q00 to q̄.

In [10], Raclet et al. use a similar approach to pruning, but without an explicit
universal state. Instead, when pruning illegal states, they introduce a state we
denote as tt, which almost behaves like our universal state. By construction,335

this state has only input may-transitions as incoming transitions. Furthermore,
it has a may-loop for every action of the parallel composition so that it can
be refined by any state, much like our universal state (see Def. 4(i)). But tt
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p0P : · ·a? b! q0Q: b? r0R: j?

(p0 k q0) k r0 tt k r0
a?

j?

a?, b!

j?

p0 k (q0 k r0) tt
a?

j?

a?, b!, j?

Figure 4: Di↵erences between our state e and tt in [10], where AP = {a}/{b}, AQ = {b}/;
and AR = {j}/;.

behaves di↵erently in a parallel composition. To see this, consider the MIAs P ,
Q, R in Fig. 4, where we construct (P k Q) k R according to [10]. Since tt is340

an ordinary state, it is combined with r0 inheriting the j-must-loop. In our
approach, the combination with r0 is an inherited error, and the target state
just has a j-may-loop.

More importantly, there is the severe problem that parallel composition
in [10] is not associative. Consider P k (Q k R), also shown in Fig. 4, which345

is not equivalent according to wv (and the equivalence in [10]) to (P kQ) kR,
due to the j-must-loop at tt k r0. Note that our example does not rely on the
multicast aspect of our parallel composition; it works just as well for the classic
IA parallel composition.

We now prove that our parallel composition is indeed associative, starting350

with two lemmas.

Lemma 10. If P , Q are composable MIAs, p k q 2 P k Q, o 2 OPkQ and
i 2 IPkQ, then:

1. p k q o99K i↵ p
o99K and o 2 OP , or q

o99K and o 2 OQ.

2. If p 6 i�! and i 2 IP or if q 6 i�! and i 2 IQ, then p k q 6 i�!. The reverse355

implication does not hold in general.

Proof. 1. Implication “)” is obvious. If implication “(” were false, then (p, q)

would be a new error or (p, q)
o99K (p0, q0) in P ⌦Q with p0 k q0 undefined. Both

would render (p, q) illegal and p k q undefined, leading to a contradiction.
2. This implication is also obvious, but the reverse implication does not hold360

since the must-transition of p k q might have been cut during pruning.

Lemma 11. Given three MIAs P1, P2 and P3, we have:

1. (P1 k P2) k P3 is defined i↵ P1, P2 and P3 are pairwise composable i↵
P1 k (P2 k P3) is defined as well.

2. (P1 k P2) k P3 is equal to S obtained from applying pruning in one step365

to (P1 ⌦ P2) ⌦ P3 (up to the name of the respective universal state). For
this purpose, a state ((p1, p2), p3) is a new error if, for some i 6= j with
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i, j 2 {1, 2, 3}, there is some a 2 Ai \ Aj such that a 2 Oi, pi
a99K and

pj 6 a�!; it is an inherited one, if pi = ei for some i 2 {1, 2, 3}.

Proof. 1. is easy. 2. For reasons of readability we use P , Q, R instead of P1,370

P2, P3 and write (p, q, r) for ((p, q), r). Let EPQR denote the illegal states of
(P ⌦Q)⌦R as defined above when constructing S. We denote the illegal states
of P⌦Q and (P kQ)⌦R by EPQ and E(PkQ)⌦R resp. Furthermore, let ErrPQR,
ErrPQ and Err(PkQ)⌦R be the errors of the respective systems. We also say

that two states p and q produce an error, if (p, q) is an error due to p
a99K and375

q 6 a�! while a 2 OP \ IQ or vice versa.
Our first aim is to show that EPQR = (EPQ⇥R)[(E(PkQ)⌦R\({ePkQ}⇥R)).

Part “✓”. We prove that (p, q, r) 2 EPQR is contained in the r.h.s. by induction
on the length of a local transition sequence from (p, q, r) to an error in ErrPQR.
For the base case, we show ErrPQR ✓ (EPQ⇥R)[ (E(PkQ)⌦R \ ({ePkQ}⇥R)).380

Consider (p, q, r) 2 ErrPQR. If (p, q) is illegal in P ⌦Q (this covers the cases
that p or q is universal or that p and q produce an error), then (p, q, r) 2 EPQ⇥R.
Otherwise, r = eR and (p, q, r) 2 Err(PkQ)⌦R \ ({ePkQ}⇥R) ✓ E(PkQ)⌦R \
({ePkQ}⇥R), or r produces the error with p or q (or possibly both). W.l.o.g.

let p and r produce the error because p
a99K and r 6 a�! for some a 2 OP \ IR385

or because p 6 a�! and r
a99K for some a 2 IP \ OR. By Lem. 10.1, this leads

to p k q
a99K and r 6 a�! or, by Lem. 10.2, to p k q 6 a�! and r

a99K. Again,
(p, q, r) 2 Err(PkQ)⌦R \ ({ePkQ}⇥R).

For the induction step, consider (p, q, r) 2 EPQR such that (p, q, r)
!99K

(p0, q0, r0) 2 EPQR and (p0, q0, r0) 2 (EPQ ⇥R) [ (E(PkQ)⌦R \ ({ePkQ}⇥R)) by390

induction hypothesis. By the argument at the beginning of the base case, we
can assume that pkq is defined and, thus, (pkq, r) exists in (P kQ)⌦R. Thus, if
(p0, q0, r0) 2 E(PkQ)⌦R \({ePkQ}⇥R)), then (p, q, r) 2 E(PkQ)⌦R \({ePkQ}⇥R))
by the definition of E.

Finally, consider (p0, q0, r0) 2 EPQ⇥R. If the !-transition is only performed395

by r, then (p0, q0, r0) = (p, q, r0) and, thus, (p, q) 2 EPQ, contradicting that

(p, q) is not illegal. Otherwise, if ! 2 OP⌦Q[{⌧}, then (p, q)
!99K (p0, q0) 2 EPQ

and (p, q)2EPQ, a contradiction. Thus, ! 2 IP⌦Q and r performs ! as an

output since, overall, it is an output. As (p, q)
!99K (p0, q0) 2 EPQ, this input

transition is cut when pruning P ⌦Q, implying pkq 6!�!. This shows again that400

(p, q, r) 2 Err(PkQ)⌦R \ ({ePkQ}⇥R).

Part “◆”. We show that (EPQ ⇥R) [ (E(PkQ)⌦R \ ({ePkQ}⇥R)) ✓ EPQR.
First, we establish EPQ ⇥ R ✓ EPQR: We prove that (p, q, r) 2 EPQ ⇥ R

is contained in EPQR by induction on the length of a local transition sequence
from (p, q) to an error in ErrPQ. In the base case (p, q) 2 ErrPQ, we have405

that p and q produce an error or one of them is an error state. In either case

(p, q, r) 2 ErrPQR ✓ EPQR. For the induction step, consider some (p, q)
!99K

(p0, q0) 2 EPQ where, by induction hypothesis, {(p0, q0)}⇥R ✓ EPQR. If ! /2 AR,
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then (p, q, r)
!99K (p0, q0, r) 2 EPQR, and we are done. If ! 2 AR, then we must

have ! 2 IR. Now, either (p, q, r) 2 ErrPQR or (p, q, r)
!99K (p0, q0, r0) 2 EPQR410

for some r0, and in either case we are done.
Second, we establish E(PkQ)⌦R \ ({ePkQ} ⇥ R) ✓ EPQR. We prove that

(p, q, r)2E(PkQ)⌦R \ ({ePkQ} ⇥ R) is contained in EPQR by induction on the
length of a local transition sequence from (p k q, r) to an error in Err(PkQ)⌦R.
In the base case (p k q, r) 2 Err(PkQ)⌦R \ ({ePkQ} ⇥ R), we have that r = eR415

and, thus, (p, q, r) 2 ErrPQR ✓ EPQR, or that p k q and r produce an error.

The latter means either p k q
a99K and r 6 a�! for some a 2 (OP [ OQ) \ IR,

implying p
a99K and a 2 OP or q

a99K and a 2 OQ by Lem. 10.1, and hence

(p, q, r) 2 ErrPQR ✓ EPQR; or pkq 6 a�! and r
a99K for some a 2 (IP [IQ)\OR.

Here, p k q 6 a�! can have several reasons. We might have p 6 a�! and a 2 IP , or420

q 6 a�! and a 2 IQ, and in both cases (p, q, r) 2 ErrPQR due to r
a99K . Otherwise,

(p, q)
a�! (p0, q0) 2 EPQ; in this case, (p, q, r)

a99K (p0, q0, r0) 2 EPQ⇥R ✓ EPQR

by the above, implying (p, q, r) 2 EPQR since a 2 O(P⌦Q)⌦R. For the induction

step, consider some (p k q, r)
!99K (p0 k q0, r0) 2 E(PkQ)⌦R; since (p0, q0, r0) 2

EPQR by induction hypothesis, we are done with the ‘◆’-case and, thus, with425

establishing the desired equality.

Denoting the universal state of S by e, we now show that the state space
(P ⇥Q⇥R) \EPQR [ {e} of S coincides with the one of (P kQ) kR (up to the
name of the universal state). The states of (P kQ) kR are:

(((P ⇥Q) \ EPQ [ {ePkQ})⇥R) \ E(PkQ)⌦R [ {e}
= ((P ⇥Q⇥R) \ (EPQ ⇥R) [ ({ePkQ}⇥R)) \ E(PkQ)⌦R [ {e}

= (P ⇥Q⇥R) \ ((EPQ ⇥R) [ E(PkQ)⌦R)| {z }
=(P⇥Q⇥R)\EPQR

[({(ePkQ}⇥R) \ E(PkQ)⌦R| {z }
=;

[{e})

For the last step, note that (P ⇥Q⇥R) \ ({ePkQ}⇥R) = ;.
Finally, we prove that the transitions of S and (P kQ)kR are the same. For

transitions to e, consider (p k q) k r i99K e for some i 2 I(PkQ)kR. This transition

exists i↵ (pkq, r) i99K (t, r0) 2 E(PkQ)⌦R for some t and r0. Now, either t = p0kq0430

for some p0 and q0, and we have (t, r0) 2 E(PkQ)⌦R\({ePkQ}⇥R); or (pkq, r) i99K
(ePkQ, r

0), which holds i↵ (p, q)
i99K (p0, q0) 2 EPQ and either r

i99K r0 or i /2 AR

and r = r0. This is equivalent to (p, q, r)
i99K (p0, q0, r0) 2 EPQ ⇥ R. Both cases

together show: (p k q) k r
i99K e i↵ (p, q, r)

i99KP⌦Q⌦R (p0, q0, r0) 2 EPQR i↵

(p, q, r)
i99KS e in S.435

For transitions between the states of S, which are also the states of (P kQ)kR,
observe that these are exactly the transitions inherited from (P⌦Q)⌦Rminus all

i-transitions from any s with s
i99K e. In (P kQ)kR, all transitions are inherited

indirectly from (P ⌦Q)⌦R; if s
i99K e, s clearly has no other i-transitions.
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It remains for us to show that no a-transition from some state s 2 S440

is missing, if s 6 a99K e. Assume the contrary, namely that a transition s =

(p, q, r)
a99KP⌦Q⌦R (p0, q0, r0) of S is missing in (P k Q) k R although s 6 a99K e.

This can only be due to pruning; recall that (p k q) k r and (p0 k q0) k r0 are states
of (P kQ) kR.

If (p, q) 6 a99KP⌦Q, then a /2 AP [ AQ, and the missing transition was lost445

when pruning (P kQ)⌦R, contradicting s 6 a99K e. Thus, (p, q)
a99KP⌦Q (p0, q0).

If pkq 6 a99K p0 kq0, then we have pkq a99K ePkQ and (pkq, r) is illegal if a 2 OR

or (pkq)kr a99K e, a contradiction in both cases. Thus, (pkq, r) a99K (p0kq0, r0) in
(P kQ)⌦R. Again in this case, the transition was lost when pruning (P kQ)⌦R,
a contradiction.450

This lemma immediately implies the desired associativity:

Theorem 12. Parallel composition is associative in the sense that, for MIAs P ,
Q and R, if (P k Q) k R is defined, then P k (Q k R) is defined and both are
isomorphic, and vice versa.

Now we proceed to show that MIA refinement is compositional wrt. parallel455

composition, which essentially means that P1 v Q1 implies P1 k P2 v Q1 k P2

for all MIAs P1, Q1 and P2. The proof requires the following two lemmas:

Lemma 13 (Compatibility). For MIAs P1, P2 and Q1, let EP be the E-set
of P1 ⌦ P2 and EQ be the one of Q1 ⌦ P2. Further, let p1 2 P1, p2 2 P2 and
q1 2 Q1 such that p1 v q1. Then, (p1, p2) 2 EP implies (q1, p2) 2 EQ.460

Proof. Let I1/O1 be the alphabets of P1 and Q1, let I2/O2 be the alphabets of
P2, and let I/O be the alphabets of the products. The proof is by induction on
the length of a path from (p1, p2) to an error of P1 ⌦ P2:

(Base) Let (p1, p2) be an error.

• Let p1
a99K with a 2 O1 \ I2 and p2 6 a�!. Then, for some q01, we have465

q1
"

=) q01
a99K by p1 v q1; hence, (q1, p2)

"
=) (q01, p2) 2 EQ and

(q1, p2) 2 EQ as well.

• Let p2
a99K with a 2 O2 \ I1 and p1 6 a�!. If q1

a�!, we have a contra-
diction to p1 v q1; otherwise, (q1, p2) is an error since a 2 I1 \O2.

• If p1 = eP1 , then q1 = eQ1 because of p1 v q1, and thus (q1, p2) 2 EQ.470

• Case p2 = eP2 is obvious.

(Step) For a shortest path from state (p1, p2) to an error, consider the first

transition (p1, p2)
!99K (p01, p

0
2) 2 EP , where ! 2 O [ {⌧}. The transition

is due to either Rule (PMay1), (PMay2) or (PMay3). In all cases we
find some q01 2 Q1 such that (q01, p

0
2) is locally reachable from (q1, p2) and475

p01 v q01. The latter implies (q01, p
0
2) 2 EQ by induction hypothesis.
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(PMay1) p1
!99K p01, p2 = p02, ! /2 A2. Due to p1 v q1, there is a q01 such

that q1
!̂

=) q01 and p01 v q01, and (q1, p2)
!̂

=) (q01, p2) by applications
of (PMay1). By induction hypothesis, (q01, p2) 2 EQ and, therefore,
(q1, p2) 2 EQ.480

(PMay2) p1 = p01, p2
!99K p02 and ! /2 A1. Using (PMay2) we obtain

(q1, p2)
!99K (q1, p02), so that (q1, p02) 2 EQ by induction hypothesis.

Hence, (q1, p2) 2 EQ, too.

(PMay3) ! = o, p1
o99K p01 and p2

o99K p02 with o 2 A1 \ A2. Note that o
is an output for the product and one of its components, but an input485

for the other. By p1 v q1 we have q1
"

=) q001
o99K q0001

"
=) q01 for

some q01, q
00
1 , q

000
1 with p01 v q01. (Note, that in case o 2 I1 we have q1 =

q001 .) Therefore, we get (q1, p2)
"

=) (q001 , p2)
o99K (q0001 , p02)

"
=) (q01, p

0
2)

via (PMay1) and (PMay3). By induction hypothesis, (q01, p
0
2) 2 EQ

and, hence, (q1, p2) 2 EQ, too.490

The next lemma generalises the synchronisation according to Rule (PMust3) to
weak transitions:

Lemma 14 (Weak Must-Transitions). Let P , Q be composable MIAs.

1. For ↵ /2 AQ, p
↵̂

=) P 0 and q 2 Q implies (p, q)
↵̂

=) P 0 ⇥ {q} in P ⌦Q.

2. If p
a

=) P 0 (or p
a�! "

=) P 0) and q
a�! Q0 for some a 2 AP \ AQ, then495

(p, q)
a

=) P 0 ⇥Q0 (or (p, q)
a�! "

=) P 0 ⇥Q0) in P ⌦Q.

Proof. Claim 1: Clearly, the mapping P ! P ⇥ {q} : p 7! (p, q) is an isomor-
phism if we only consider must-transitions labelled with the given ↵ or ⌧ and
states in P ⇥ {q} in P ⌦Q.

Claim 2: By induction on the definition of p
a

=) P 0. In Case 2 of Def. 2, we500

have p
⌧�! P̄ and a suitable p̄

a
=) Pp̄ for each p̄ 2 P̄ , such that P 0 =

S
p̄2P̄ Pp̄.

Then, (p, q)
⌧�! P̄ ⇥ {q} due to (PMust1), and (p̄, q)

a
=) Pp̄ ⇥Q0 by induction

hypothesis; this yields (p, q)
a

=) P 0⇥Q0 due to Def. 2.2. In Case 3 (the only one
for the variant concerning

a�! "
=)), we have p

a�! P̄ and a suitable p̄
"

=) Pp̄

for each p̄ 2 P̄ such that P 0 =
S

p̄2P̄ Pp̄. Then, (p, q)
a�! P̄ ⇥Q0 by (PMust3)505

and, for each (p̄, q0) 2 P̄ ⇥ Q0, we get (p̄, q0)
"

=) Pp̄ ⇥ {q0} by Claim 1, hence

P̄ ⇥Q0 "
=) P 0 ⇥Q0. By Def. 2.3 we obtain (p, q)

a
=) P 0 ⇥Q0.

Theorem 15 (Compositionality of Parallel Composition). Let P1, P2 and Q1

be MIAs and P1 v Q1. Assume that Q1 and P2 are composable, then:

1. P1 and P2 are composable.510

2. P1 k P2 v Q1 k P2, and P1 k P2 is compatible if Q1 k P2 is.

15



Proof. Part 1 is trivial. Regarding Part 2, the second claim is immediate from
the first claim and Lem. 13. We denote the universal state of P1 kP2 and Q1 kP2

by eP and eQ, resp. EP stands for the E-set of P1 ⌦ P2 and EQ for the one
of Q1 ⌦ P2, as in Lem. 13. To establish the first claim of Part 2, we prove that

R =df {(p1 k p2, q1 k p2) | p1 v q1} [ ((P1 k P2)⇥ {eQ})

is a MIA-refinement relation by checking the conditions of Def. 4. Then, we are
done since p01 v q01 due to P1 v Q1 and, therefore, (p01 k p02, q01 k p02) 2 R.
For the second subset, the check is trivial; so consider some (p1 kp2, q1 kp2) 2 R:

(i) Obvious, since p1 k p2 6= eP .515

(ii) Let q1 k p2
i�! Q̄ due to either Rule (PMust1), (PMust2) or (PMust3).

Note that (q1, p2)
i�! Q̄ in Q1 ⌦ P2 as well. If any state pair in Q̄ was

illegal, the transition would have been removed by pruning.

(PMust1) q1
i�! Q0

1 and Q̄ = Q0
1 ⇥ {p2}. Then, by p1 v q1, there is a

P 0
1 ✓ P1 such that p1

i�! "
=)P1P

0
1 and 8p012P 0

1 9q012Q0
1. p

0
1 v q01. Now,520

(p1, p2)
i�! "
=) P 0

1 ⇥ {p2} by repeated application of Rule (PMust1)
and since i /2 A2. For every (p01, p2) 2 P 0

1 ⇥ {p2}, we have a suitable
(q01, p2) 2 Q0

1⇥ {p2}; moreover, (p01, p2) /2 EP since (q01, p2) /2 EQ and
by Lem. 13. Thus, we have (p01 k p2, q01 k p2) 2 R.

It remains for us to show that (p1, p2)
i�! "
=) P 0

1 ⇥ {p2} also exists525

in P1 k P2, i.e., that no state (p001 , p2) along this weak transition is

pruned. More generally, let us consider any p̄1 and p001 with p1
i99K

p̄1
"

=) p001 , implying (p1, p2)
i99K (p̄1, p2)

"
=) (p001 , p2). Because of

p1
i99K p̄1 and p1 v q1, there must be some q̄1 with q1

i99K "
=) q̄1

which implies (q1, p2)
i99K "
=) (q̄1, p2), and p̄1 v q̄1. If (q̄1, p2) 2 EQ,530

then all outgoing i-transitions from q1 k p2 would have been pruned,
contradicting our assumptions. Thus, and by Lem. 13, (p̄1, p2) /2 EP ,
which means that (p001 , p2) /2 EP , too.

(PMust2) p2
i�! P 0

2 and Q̄ = {q1} ⇥ P 0
2. Then, (p1, p2)

i�! P̄ =
{p1}⇥ P 0

2 according to (PMust2) and since i /2 A1. For (p1, p02) 2 P̄ ,535

we get (p1, p02) /2 EP because (q1, p02) /2 EQ and due to Lem. 13.

Thus, p1 k p2
i�! P̄ and, for every p1 k p02 2 P̄ , we have q1 k p02 2 Q̄

with (p1 k p02, q1 k p02) 2 R.

(PMust3) q1
i�! Q0

1, p2
i�! P 0

2 and Q̄ = Q0
1⇥P 0

2. (Note that i 2 I1\I2.)
Then, by p1 v q1, there is a set P 0

1 ✓ P1 such that p1
i�! "
=) P 0

1 and540

8p012P 0
1 9q012Q0

1. p
0
1 v q01. By Lem. 14 we get (p1, p2)

i�! "
=) P 0

1⇥P 0
2.

Similarly to Case (PMust1), we have to show that (p1, p2)
i�! "
=)

P 0
1 ⇥ P 0

2 also exists in P1 k P2, i.e., no state (p001 , p
0
2) along this weak
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transition is pruned. More generally, let us consider any p̄1 and

p001 with p1
i99K p̄1

"
=) p001 and some p02 with p2

i99K p02, imply-545

ing (p1, p2)
i99K (p̄1, p02)

"
=) (p001 , p

0
2). Because of p1

i99K p̄1 and

p1 v q1, there must be some q̄1 with q1
i99K "
=) q̄1, which implies

(q1, p2)
i99K "
=) (q̄1, p02), and p̄1 v q̄1. If (q̄1, p02) 2 EQ, then all out-

going i-transitions from q1kp2 would have been pruned, contradicting
our assumptions. Therefore, and by Lem. 13, (p̄1, p02) /2 EP , which550

means that (p001 , p
0
2) /2 EP , too.

(iii) Let q1 k p2
!�! Q̄ due to either (PMust1), (PMust2) or (PMust3). Again

the transition and the states exist in Q1 ⌦ P2, too, as argued above.

(PMust1) q1
!�! Q0

1, ! /2 A2 and Q̄ = Q0
1 ⇥ {p2}. Then, by p1 v q1,

there exists P 0
1 ✓ P1 such that p1

!̂
=) P 0

1 and 8p012P 0
1 9q012Q0

1. p
0
1 v555

q01. Now, (p1, p2)
!̂

=) P 0
1⇥{p2} according to (PMust1) and since ! /2

A2. Because p1 and p2 are compatible, this also holds for all pairs
along this weak transition by the definition of EP . For p01 2 P 0

1 we
have a suitable q01 2 Q0

1 such that, for the arbitrary p01 k p2, we may
also infer (p01 k p2, q01 k q2) 2 R.560

(PMust2) p2
!�!P2 P 0

2, ! /2 A1 and Q̄ = {q1} ⇥ P 0
2. In this case we

obtain that (p1, p2)
!�! P̄ = {p1} ⇥ P 0

2 by (PMust2) and ! /2 A1.
For (p1, p02) 2 P̄ we get (p1, p02) /2 EP since (q1, p02) /2 EQ and due to

Lem. 13. Thus, p1 k p2
!�! P̄ and therefore also p1 k p2

!̂
=) P̄ . For

(p1, p02) 2 P̄ we also have (p1 k p02, q1 k p02) 2 R.565

(PMust3) ! = o, q1
o�! Q0

1, p2
o�! P 0

2 for some action o 2 (O1 \ I2) [
(I1 \O2), and Q̄ = Q0

1 ⇥ P 0
2. By p1 v q1, there exists some P 0

1 ✓ P1

with p1
o

=) P 0
1 (possibly p1

o�! "
=) P 0

1, if o 2 I1) such that 8p012P 0
1

9q012Q0
1. p

0
1 v q01. Now, (p1, p2)

o
=) R ✓ P 0

1 ⇥ P 0
2 by Lem. 14 and,

as in Case (PMust1) above, all pairs along this weak transition are570

compatible. Hence, p1 k p2
o

=) R and, for all p01 k p02 2 R, we have
some q0 2 Q0 such that (p01 k p02, q01 k p02) 2 R.

(iv) First, consider p1 kp2
i99K eP due to pruning, i.e., (p1, p2)

i99K(p01, p02) 2 EP .

(PMay1) p1
i99KP1 p01, i /2 A2 and p02 = p2. By p1 v q1, we have q1

i99K
q001

"
=) q01 for some q01, q

00
1 such that p01 v q01. Hence, (q1, p2)

i99K575

(q001 , p2)
"

=) (q01, p2) by repeated application of (PMay1) and since
i /2 A2. By Lem. 13 we get (q01, p2) 2 EQ and thus (q001 , p2) 2 EQ.

Therefore, q1 k p2
i99K eQ by pruning.

(PMay2) p2
i99K p02, i /2 A1 and p01 = p1. Then, (q1, p2)

i99K (q1, p02)

by (PMay2). By Lem. 13 we get (q1, p02) 2 EQ. Hence, q1 kp2
i99K eQ580

by pruning.
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(PMay3) p1
i99K p01 and p2

i99K p02 for some action i 2 I1 \ I2. Due

to p1 v q1, we get q1
i99K q001

"
=) q01 for some q01, q

00
1 such that

p01 v q01. Hence, (q1, p2)
i99K (q001 , p

0
2)

"
=) (q01, p

0
2) by Rules (PMay1)

and (PMay3). Lem. 13 yields (q01, p
0
2) 2 EQ, and thus (q001 , p

0
2) 2 EQ585

as well. Therefore, q1 k p2
i99K eQ by pruning.

Second, we consider p1 k p2
i99K p01 k p02, due to one of the Rules (PMay1),

(PMay2) or (PMay3).

(PMay1) p1
i99K p01, i /2 A2 and p02 = p2. By p1 v q1, we have q1

i99K "
=)

q01 for some q01 such that p01 v q01. Hence, (q1, p2)
i99K "
=) (q01, p2) by590

repeated application of (PMay1) and since i /2 A2. If any state

along this weak transition is in EQ, then we get q1 k p2
i99K eQ

and (p01 k p02, eQ) 2 R. Otherwise, q1 k p2
i99K "
=) q01 k p2 with

(p01 k p2, q01 k p2) 2 R.

(PMay2) p2
i99K p02, i /2 A1 and p01 = p1. Then, (q1, p2)

i99K (q1, p02)595

by (PMay2). If the latter state (q1, p02) is in EQ, then q1 k p2
i99K eQ

and are done. Otherwise we have (p1 k p02, q1 k p02) 2 R.

(PMay3) p1
i99K p01 and p2

i99K p02 for some action i 2 I1 \ I2: Due

to p1 v q1, we get q1
i99K q001

"
=) q01 for some q01, q

00
1 2 Q such

that p01 v q01. Now, we obtain (q1, p2)
i99K (q001 , p

0
2)

"
=) (q01, p

0
2)600

by (PMay1) and (PMay3). If any state along (q001 , p
0
2)

"
=) (q01, p

0
2) is

in EQ, then we get (q1, p2)
i99K eQ and (p01 k p02, eQ) 2 R. Otherwise,

we again have (p01 k p02, q01 k p02) 2 R.

(v) Let p1 k p2
!99K p01 k p02, due to one of the Rules (PMay1) through (PMay3).

(PMay1) p1
!99K p01, ! /2 A2 and p02 = p2. By p1 v q1, we have q1

!̂
=)605

q01 for some q01 such that p01 v q01. Hence, (q1, p2)
!̂

=) (q01, p2) by
repeated application of (PMay1) and since ! /2 A2. If any state
along this weak transition was in EQ, then also (q1, p2) 2 EQ, which

contradicts (p1 k p2, q1 k p2) 2 R. Thus, q1 k p2
!̂

=) q01 k p2 with
(p01 k p2, q01 k p2) 2 R.610

(PMay2) p2
!99K p02, ! /2 A1 and p01 = p1. Then, (q1, p2)

!99K (q1, p02)
by (PMay2) and due to p1 v q1. If the latter state (q1, p02) were
in EQ, then also the former state (q1, p2) would be in EQ. Thus, we

have q1kp2
!99K q1kp02 and (p1kp02, q1kp02) 2 R.

(PMay3) ! = o, p1
o99K p01 and p2

o99K p02 for some action o 2 (O1 \ I2)[615

(I1 \ O2). Due to p1 v q1, we get q1
"

=) q001
o99K q0001

"
=) q01 (or
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q1
o99K q0001

"
=) q01 if o 2 I1) for some q01, q

00
1 , q

000
1 2 Q such that p01 v q01.

Now, we obtain (q1, p2)
"

=) (q001 , p2)
o99K (q0001 , p02)

"
=) (q01, p

0
2) (or

(q1, p2)
o99K (q0001 , p02)

"
=) (q01, p

0
2)) by (PMay1) and (PMay3). Hence,

q1 k p2
o

=) q01 k p02 and (p01 k p02, q01 k p02) 2 R, as in Case (PMay1)620

above.

We close this subsection on parallel composition with a discussion of legal
environments as introduced for IA in [4]. Intuitively, a legal (or helpful) environ-
ment for a composition P⌦Q is a MIA V that prevents P⌦Q from running into
an error. In the final application, the parallel composition is embedded in such625

a legal environment, which may for example represent a user. In [4], it is shown
that two systems are compatible (i.e., their parallel composition is defined) if
and only if there is a legal environment for them. This justifies to some degree
the pruning in Def. 8: the parallel composition of two IAs is undefined due to
the initial state being removed by pruning if and only if no environment can use630

them without producing errors. Correspondingly, two MIAs are incompatible
if the initial state of the parallel composition is set to e due to pruning; this
special state indicates that the composition is not defined properly.

Definition 16 (Legal Environment). A legal environment for MIAs P and Q
is a MIA V with:635

1. V is composable with P ⌦Q,

2. I(P⌦Q)⌦V = ;,

3. The reachable states of (P ⌦ Q) ⌦ V contain neither new nor inherited
errors in the sense of Lem. 11.

Note that, since (P ⌦ Q) ⌦ V only has locally controlled actions, all reachable640

errors are locally reachable. Usually, in frameworks with binary communication,
an environment is defined to have the outputs of P ⌦Q as inputs and vice versa;
due to hiding of synchronized actions, their composition is closed. Here, such a
signature results in the product only having output and internal actions, which
is natural for multicasting such as ours. One can then close the system with645

hiding all outputs. Similarly, in Cond. 2 of Def. 16 we require that composition
with an environment results in a system without inputs.

Proposition 17. MIAs P and Q are compatible if and only if there exists a
legal environment for them.

Proof. ‘)’: If P and Q are compatible, then P ⌦ Q has no locally reachable650

errors. Composing it with a MIA V that accepts all inputs (via must-loops
at the initial state) but provides no outputs, yields only those states that are
locally reachable from (p0, q0). Thus, V is a legal environment for P and Q.

‘(’: Assume, towards a contradiction, that P and Q are incompatible, i.e.,
P ⌦Q has a locally reachable error (p, q). Then, for any MIA V , (P ⌦Q)⌦ V655

either has a reachable state ((p, q), v) resulting in an inherited error, or there is
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a first output transition on the path to (p, q) that V prevents by not providing
the corresponding input transition. This results in a locally reachable new error
in (P ⌦Q)⌦ V . Either way, V is no legal environment.

We can do better than this to justify pruning. The next proposition shows660

that pruning only removes behaviour from P ⌦Q that is never reached in any
legal environment. In other words, pruning does not change the behaviour
when the composition is used properly, i.e., in a legal environment. Note that
our result is actually more general, since it holds for all MIAs V that satisfy
Conds. 1 and 3 of Def. 16.665

Proposition 18. For MIAs P and Q and a corresponding legal environment
V , we have (P ⌦ Q) ⌦ V = (P k Q) ⌦ V (up to the names of the respective
universal states).

Proof. Due to Def. 16, the pruning in Lem. 11 does not change (P ⌦ Q) ⌦ V
and, in the latter, the universal state is unreachable. Furthermore, it equals670

(P k Q) k V (up to the names of universal states). Since the universal state is
unreachable in (P kQ) kV , pruning of (P kQ)⌦V left the MIA unchanged and
the claim follows.

3.2. Universal States in Input/Output Approaches

States that, like our universal state e, represent arbitrary behaviour and have675

only input transitions as ingoing transitions date back at least to the thesis of
Dill [25]. His work is focussed on a trace-based semantics, consisting of a set
of ordinary traces and a set of so-called failure traces. The latter deal with
behaviour resulting from communication mismatches. LTS-representations of
the semantics have a special state that has arbitrary behaviour due to loop-680

ing transitions for all actions. This state completes the LTS by making the
other states input-enabled, and it is not an ordinary state since it is the only
one representing the failure traces. The notion of input-enabledness is purely
syntactic: a state s is input-enabled if it has an outgoing i-transition (must or
may in case of modalities), for each input i. Considering an LTS in [25], an685

i-transition from s to the special state indicates that s cannot safely receive this
input. This is just the same as a missing input in IA, and the LTS really is an
IA. The representation based on a special state is just more convenient for a
trace-based semantics expressing that, as in standard IA, a missing input can
always be added in a refinement step.690

A similar completion can be found in a process-algebraic setting in [26],
where it is called demonic: if a process p does not have an i-transition accord-
ing to the standard operational rules, then there are additional rules that give p
an i-transition to a process having arbitrary behaviour, essentially due to loops.
The latter process is an ordinary process, and communication mismatches are695

not considered. A variant of demonic completion is also used in [27] to achieve
compositionality for parallel composition in the ioco-approach to conformance
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testing; this approach also disregards communication mismatches. The sugges-
tion is to apply the completion to the specification first, each time the ioco-
implementation relation is checked. That the completion uses ordinary states700

makes sense only because ioco does not support stepwise refinement and as-
sumes that implementations are always input-enabled. Applying the suggested
solution in IA would force each refinement to be input-enabled, violating the
very idea of IA.

This problem with ordinary universal states in an IA-approach can be fixed705

as in [6, 24], where universal states are called error states. The semantics and
the special treatment of error states in these papers is similar to the one in [25],
but error states do not necessarily complete an IA and do not need loops. They
arise in case of a communication mismatch in a parallel composition, just as in
the present paper. The problem with ordinary universal states vanishes when710

modalities are added, since input-transitions to the universal state and the loops
at this state can be declared to be of may-modality. Completion with this idea is
used in [8] when translating IA with their refinement relation to MTSs. There,
an input may-transition always expresses that the resp. input is allowed in a
refinement, but at present the input cannot be received safely.715

As already discussed above, an ordinary state tt with may-loops is inserted
during parallel composition in [10] as target for input transitions that have been
cut due to pruning. This way, a precongruence is achieved, and it works fine for
refinement that tt is regarded as an ordinary state. However, parallel composi-
tion is not associative this way; to avoid this problem, we insert e during parallel720

composition and give it a special treatment in refinement. It is important to
note that we do not perform completion, i.e., for some ordinary state, an input
can also be forbidden in all refinements, in accordance with the MTS-view.

3.3. Hiding and Restriction

We now introduce operators for scoping actions, namely hiding [13] and725

restriction [14], as is usual in process algebra. In our setting, outputs are under
the control of the system; when disconnected, they are still performed but the
signal is no longer sent to the outside, i.e., the action is internal. In contrast,
inputs are only performed because of an outside stimulus. Disconnecting an
input rather blocks it and, therefore, we introduce a restriction operator for730

inputs. The same idea is used in the IA-setting of [28], but hiding and restriction
are combined into one operation.

Definition 19 (Hiding). Given a MIA P = (P, I,O,�!P , 99KP , p0, e) and a
set L of actions with L \ I = ;. Then, P hiding L is the MIA P/L =df (P, I,
O \L,�!P/L, 99KP/L, p0, e), where all transition labels o 2 L are replaced by ⌧ .735

Definition 20 (Restriction). Given a MIA P = (P, I,O,�!P , 99KP , p0, e) and
a set L of actions such that L\O = ;. Then, restricting L in P yields the MIA
P \L =df (P, I \L,O,�!P\L, 99KP\L, p0, eP ), where all transitions with a label
contained in L are deleted.
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Observe that hiding and restriction yield well-defined MIAs; in particular, the740

sink condition is preserved by hiding since L \ I = ;.

Lemma 21 (Weak Must-Transitions under Hiding). Let P be a MIA, L\I = ;
and o 2 L \O. If p

o
=)P P 0, then p

"
=)P/L P 0.

Proof. By induction on the definition of p
o

=)P P 0. If p
o

=)P P 0 is due to
Def. 2.3, then the claim is obvious. Otherwise, p

o
=)P P 0 is due to some745

p
⌧�!P P̄ and P̄

o
=)P P 0 according to Def. 2.2. By induction hypothesis, we

have p̄
"

=)P/L Pp̄ for each p̄ 2 P̄ and P 0 =
S

p̄2P̄ Pp̄. By Def. 2.2, we obtain

p
"

=)P/L P 0.

As desired, MIA-refinement is a precongruence wrt. hiding and restriction:

Proposition 22. Let P , Q be MIAs with P v Q.750

1. P/L v Q/L for any set L of actions with L \ I = ;.

2. P \ L v Q \ L for any set L of actions with L \O = ;.

Proof. Since P v Q, there is a MIA-refinement relation R with (p, q) 2 R. We
show that R is also a MIA-refinement relation for P/L v Q/L and P \L v Q\L.
The only interesting case concerns hiding and Def. 4(iii), i.e., q

⌧�!Q/L Q0 due755

to q
o�!Q Q0 for o 2 O \ L. The latter is matched by a transition p

o
=)P P 0

with 8p0 2P 0 9q0 2Q0. (p0, q0) 2 R. By Lem. 21, this yields p
"

=)P/L P 0.

3.4. Parallel Composition with Hiding

We now turn our attention to parallel composition with immediate hiding
on synchronised actions, thereby enforcing binary communication. This parallel760

composition is used by de Alfaro and Henzinger for Interface Automata (IA)
in [23, 4]. We show here that the standard IA parallel composition can be
expressed via our multicast parallel composition and hiding.

Definition 23 (Parallel Product and Composition with Hiding). MIAs P1

and P2 are H-composable if O1 \ O2 = ; = I1 \ I2. We then define the prod-765

uct with hiding in the same way as the parallel product in Def. 7, except for
O =df (O1 [O2) \ (I1 [ I2) and a change of Rules (PMust3) and (PMay3):

(PMust3’) (p1, p2)
⌧�! P 0

1 ⇥ P 0
2 if p1

a�! P 0
1 and p2

a�! P 0
2 for some a,

(PMay3’) (p1, p2)
⌧99K (p01, p

0
2) if p1

a99K p01 and p2
a99K p02 for some a.

From this parallel product with hiding, we get the parallel composition with
hiding P1 | P2 by the same pruning procedure as in Def. 8.770

It can easily be seen that the parallel product with hiding can be expressed by
our parallel product without hiding and the hiding operator. Pruning does not
change this, since it treats outputs and internal actions equally.

Proposition 24. Let P1, P2 be H-composable MIAs and S = A1 \ A2 be the
set of synchronising actions. Then, P1 | P2 = (P1 k P2)/S.775
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Associativity is a natural property of parallel composition, so one would expect
that (P | Q) | R = P | (Q | R) for some suitable equivalence = (e.g., equality
up to isomorphism) provided that one side is defined. This law looks much
less natural if we rewrite it according to Prop. 24; it is wrong in the version
of | in [23]. Here, associativity can be proved from Thm. 12 and the following780

proposition.

Proposition 25. For composable MIAs P and Q we have the following laws,
where = means that the respective MIAs are identical (up to the naming of the
resp. universal states in Part (iii)).

(i) P/L = P if AP \ L = ;.785

(ii) P/L/L0 = P/(L [ L0) if L \ IP = L0 \ IP = ;.

(iii) (P kQ)/L = (P/L) k (Q/L) if AP \AQ \ L = ;.

Proof. Parts (i) and (ii) are straightforward. We thus focus on proving Part (iii).
P ⌦Q and P/L⌦Q/L are the same due to the condition AP \AQ \L, except
that transition labels o 2 L in the former are replaced by ⌧ in the latter; observe790

that (PMust3) and (PMay3) are never applicable to o 2 L by assumption, and
the other rules work for o 2 L and ⌧ in the same way. Also by assumption, the
same states are considered as errors in both products. As a consequence and
since pruning makes no di↵erence between output- and ⌧ -transitions, it deletes
the same states in both systems and the same input transitions get redirected795

to the respective universal states of the parallel compositions. Finally, applying
hiding to P kQ for the first system makes the MIAs identical.

Using this proposition we may now prove the associativity of |.

Proposition 26. Parallel composition with hiding is associative in the sense,
that for pairwise H-composable MIAs P , Q and R, if (P |Q) |R is defined, then800

P | (Q |R) is defined as well and both are isomorphic, and vice versa.

Proof. Let P , Q, R be pairwise H-composable MIAs. We set SPQ =df AP \AQ,
APQ =df (AP [AQ) \SPQ, etc. and let SPQR =df SPQ [SPR [SQR. Note that
(⇤) SPQ \AR = ; since, otherwise AR would contain an action that is an input
in one of P and Q and an output in the other, contradicting H-composability
of R with one of the other MIAs. Furthermore, (⇤⇤) SPQ [ (APQ \ AR) =

SPQ [ (((AP [ AQ)/SPQ) \ AR)
(⇤)
= SPQ [ (((AP [ AQ) \ AR)/SPQ) = SPQ [

((AP [AQ) \AR) = SPQ [ (AP \AR) [ (AQ \AR) = SPQR. We now obtain:

(P |Q) |R = ((P kQ)/SPQ kR)/(APQ \AR) (Prop. 24)

= ((P kQ)/SPQ kR/SPQ)/(APQ \AR) (Prop. 25(i) and (⇤))
= ((P kQ) kR)/SPQ/(APQ \AR) (Prop. 25(iii) and (⇤))
= ((P kQ) kR)/SPQR (Prop. 25(ii) and (⇤⇤))
= (P k (Q kR))/SPQR (Thm. 12)

= P | (Q |R) (symmetrically)
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P :

p0

rqst!
resp!
fail!

D:

d0

d1

rqst? resp! fail!

Q:

q0

q1

eQ

rqst! resp? fail?

resp?
fail?

Q kD:

(q0, d0)

(q1, d1)

rqst! resp! fail!

Figure 5: Q = P//D with q0 = p0//d0 and q1 = p0//d1, where the alphabets are AP = ;/{rqst,
resp, fail}, AD = {rqst}/{resp, fail}, AQ = {resp, fail}/{rqst} and AQkD = ;/{rqst, resp,
fail}.

4. Quotienting

The quotient operation is a kind of inverse or adjoined operation to parallel
composition. It equips the theory with a means for component reuse and in-
cremental, component-based specification. Given MIAs P and D, the quotient805

is the coarsest MIA Q such that Q kD v P holds; we call this inequality the
defining inequality of the quotient, and write P//D if the quotient exists. In the
following, we call P the specification, D the divisor (one might think of it as an
already implemented component) and Q the quotient (the completion of D).

We demonstrate quotienting with the simple client-server application shown810

in Fig. 5, consisting of a given server D and one client. D can receive a request
and answers with a response or possibly a failure message. The client should
obviously have the outputs of D as inputs and D’s inputs as outputs. So the
parallel composition of server and client has only outputs, and it is error-free
if and only if it is not universal. Thus, it must refine the specification P , also815

displayed in the figure. A most general, i.e., coarsest, specification for the client
is then obtained as the quotient Q =df P//D.

Fig. 5 gives a preview of this Q according to our construction below. Q may
implement the sending of a request, and if so, it must be receptive for a response
and a failure. If one of the latter two transitions were of may-modality, this820

would cause a communication mismatch in the parallel composition with D.
The may-transitions resp? and fail? from q0 to eQ only exist to make Q as
coarse as possible; they disappear in the parallel composition with D. Now, it
is easy to check that the defining inequality QkD v P is satisfied. The example
also shows that, in general, we do not have equality of (P//D) kD and P .825

We define the quotient for a restricted set of MIAs, namely where the specifi-
cation P has no ⌧s and where the divisor D is may-deterministic and without ⌧s.

We call D may-deterministic if d
↵99K d0 and d

↵99K d00 implies d0 = d00 for all d,
d0, d00 and ↵. Due to syntactic consistency, a may-deterministic MIA has no dis-
junctive must-transitions, i.e., the target sets of must-transitions are singletons.830

In addition, we exclude the pathological case where P has some state p and

input i with p
i99K eP and 9p0 6= eP . p

i99K p0. Recall that transitions p
i99K eP

are meant to express the following situation: (a) input i is not specified at p,

24



but at the same time (b) p shall be refinable as in Interface Automata [4] by a
state with an i-transition and arbitrary subsequent behaviour.835

In the following, we call MIAs P and D satisfying our restrictions a quo-
tient pair. Despite the restrictions, our quotient significantly generalises the
one of Modal Interfaces [10], which considered deterministic specifications and
deterministic divisors only.

4.1. Definition and Main Result840

Like most other operators we define the quotient in two stages, where we

write mayP (p,↵) for {p0 2 P | p ↵99KP p0}. Regarding the choice of the input
and output alphabets in the following definition we adopt the one by Chilton et
al. [7] and Raclet et al. [10]; we discuss alternative choices in Sec. 4.2.

Definition 27 (Pseudo-Quotient). Let (P, IP , OP ,�!P , 99KP , p0, eP ) and (D,845

ID, OD,�!D, 99KD, d0, eD) be a quotient pair with AD ✓ AP and OD ✓ OP .
We set I =df IP [ OD and O =df OP \ OD. The pseudo-quotient of P over
D is defined as the universal MIA ({(eP , eD)}, I, O, ;, ;, (eP , eD), (eP , eD)) if
p0 = eP . Otherwise, P ↵D =df (P ⇥D, I,O,�!, 99K, (p0, d0), (eP , eD)), where
the transition relations are defined by the following rules:850

(QMust1) (p, d)
a�! P 0 ⇥ {d} if p

a�!P P 0 and a /2 AD

(QMust2) (p, d)
a�! P 0 ⇥ {d0} if p

a�!P P 0 and d
a�!D d0

(QMust3) (p, d)
a�! P 0 ⇥ {d0} if P 0 =df mayP (p, a) 6= ;, eP /2 P 0,

d
a99KD d0 and a 2 OD

(QMay1) (p, d)
a99K (p0, d) if p

a99KP p0 6= eP and a /2 AD

(QMay2) (p, d)
a99K (p0, d0) if p

a99KP p0 6= eP and d
a�!D d0

(QMay3) (p, d)
a99K (p0, d0) if p

a99KP p0, eP /2 mayP (p, a),

d
a99KD d0 and a /2 OP \ ID

(QMay4) (p, d)
a99K (eP , eD) if eP 2 mayP (p, a) (note: a 2 IP ✓ I)

(QMay5) (p, d)
a99K (eP , eD) if p 6= eP , d 6 a99KD and a2AD \ (OP\ID)

(note: AD \ (OP \ ID) = I \AD)

The intuition behind a state (p, d) in P ↵D is that (p, d) composed in parallel
with d refines state p, and that (p, d) should be the coarsest state wrt. MIA
refinement satisfying this condition. With this in mind, we now justify the
above rules intuitively. A formal proof is given in Lem. 29 and Thm. 30 below.855

Rule (QMust1) is necessary due to the following consideration. If P has an
a-must-transition where a is unknown to D, this can only originate from an
a-must-transition in the quotient Q that we wish to construct; in order to be
most permissive, each p0 2 P 0 must have a match in Q kD. The corresponding
consideration is true for Rule (QMay1), which also ensures syntactic consistency860

for Rule (QMust1).
Rule (QMust2) is obvious in the light of the choice of alphabet in Def. 27.

As P ↵D has all actions of P and D in its alphabet, it also needs an a-must-
transition to produce such a transition at (p, d) k d. Here, Rule (QMay2) is the
companion rule for guaranteeing syntactic consistency.865
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Rule (QMust3) ensures that (p, d) and d are compatible in case of an output
of d. An application of this rule can be seen in Fig. 5 for action fail? at q1 =
p0//d1. Syntactic consistency results from Rules (QMay2) and (QMay3); note
that a 2 OD implies a /2 ID.

Observe how Rules (QMay2) and (QMay3) play together well. By the con-870

dition a /2 OP \ ID = O \ ID, Rule (QMay3) does not generate an output
a-may-transition in the pseudo-quotient that could make (p, d) and d illegal.
These transitions are added by Rule (QMay2) if the a-transition at d is of must-
modality and compatibility is ensured. This is exactly the situation in Fig. 5
for action rqst! at q0 = p0//d0.875

Rule (QMay4) deals with the universal state in P . Obviously, eP↵D =
(eP , eD) is the most general state of P↵D that refines eP in parallel composition
with d. Implicitly, this rule replaces all states (eP , d) by eP↵D.

Rule (QMay5) makes P ↵ D as coarse as possible. The input a-may-
transitions introduced here just disappear in (P ↵ D) k D, since a is blocked880

by D. This can be seen in Fig. 5 for actions resp? and fail? at q0 = p0//d0 and
in Q kD at (q0, d0).

P ↵D is indeed a MIA. We have already argued for syntactic consistency.
All rules ensure p 6= eP ; hence, eP↵D has no outgoing transitions. Incoming
transitions of eP↵D can only arise from Rule (QMay4) or (QMay5), which are885

only applicable for a 2 I.
Up to now we have only defined the pseudo-quotient. Considering a can-

didate pair (p, d), it may be impossible that p is refined by a state resulting
from a parallel composition with d; this depends, e.g., on the modalities and
the labels of the transitions leaving p and d. We call such pairs impossible states890

and remove them from the pseudo-quotient. For example, consider states p
a�!

and d
a99K such that d 6 a�!; no parallel composition with d refines p. While

may-transitions can be refined by removing them and disjunctive transitions
can be refined to subsets of their targets in order to prevent the reachability of
impossible states, all states having a must-transition to only impossible states895

must also be removed. This pruning results in the quotient.

Definition 28 (Quotient). Let P ↵D be the pseudo-quotient of P over D. The
set G ✓ P ⇥ D of impossible states is defined as the least set satisfying the
following rules:

(G1) p
a�!P and d 6 a�!D and a 2 AD implies (p, d) 2 G

(G2) p 6= eP and p 6 a99KP and d
a99KD and a 2 OD implies (p, d) 2 G

(G3) p 6= eP and d = eD implies (p, d) 2 G

(G4) (p, d)
a�!P↵D R0 and R0 ✓ G implies (p, d) 2 G

900

The quotient P//D is obtained by deleting all states (p, q) 2 G from P ↵D.
This also removes any may- or must-transition exiting a deleted state and any
may-transition entering a deleted state; in addition, deleted states are removed
from targets of disjunctive must-transitions. If (p, d) 2 P//D, then we write
p//d. If (p0, d0) /2 P//D, then the quotient P over D is not defined.905
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Rule (G1) is obvious since (p, d) cannot ensure that p
a�!P is matched if d has

no a-must-transition, as an a-may-transition or even a forbidden a at d can in no
case compose to a refinement of a must-transition at p. Rule (G2) captures the
situation where d has an output a that is forbidden at p. O↵ering an a-must-
input in the quotient would lead to a transition in the parallel composition910

with d, while not o↵ering a would lead to an error; both would not refine p.
Rule (G3) captures the division by eD: state eD in parallel with any state is
universal and does not refine p 6= eP . Finally, Rule (G4) propagates back all
impossibilities that cannot be avoided by refining.

Since P ↵D is a MIA, P//D (i.e., the quotient is defined) is a MIA as well:915

syntactic consistency and the universal state are preserved by pruning. If the
target set of a disjunctive must-transition became empty due to pruning, i.e.,
R0 ✓ G, Rule (G4) would be applicable and the source state and its must-
transition are deleted. For the sink condition, observe the notes in parentheses
in Rules (QMay4) and (QMay5).920

We show next that the quotient operation above yields the coarsest MIA
satisfying the defining inequality. For this proof, the next lemma ensures that
the definedness of k and the definedness of // are mutually preserved across
refinement.

Lemma 29. Let P , D and Q be MIAs such that P and D is a quotient pair,925

AD ✓ AP , OD ✓ OP , OQ = OP \ OD and IQ = IP [ OD. Further, let p, d, q
be states in P , D, Q, resp. Then, the following statements hold:

1. If q k d v p, then p//d is defined.

2. If q v p//d and p 6= eP , then q k d is defined.

Proof. We write �!⌦, �!k, �!↵ and �!// as a shorthand for �!Q⌦D,930

�!QkD, �!P↵D and �!P//D, resp., and analogously for may-transitions. We
show both claims by contraposition.

Claim 1: For all (p, d) 2 G, the refinement q k d v p does not hold for any
q 2 Q, possibly because q k d is not defined, i.e., (q, d) 2 E according to Def. 8.
We prove this by induction on the derivation length according to the G-rules.935

In each case, we assume q k d v p for some q 2 Q and derive a contradiction.

(G1) p
a�!, d 6 a�! and a 2 AD: By qkd v p, we have qkd a�!k, which can only

be due to (PMust2) or (PMust3); thus, d
a�!, which is a contradiction.

(G2) p 6= eP , p 6 a99K, d a99K and a 2 OD: By q k d v p, we have q k d 6 a99Kk.
Now, either (q, d)

a99K⌦ reaching an illegal state or q 6 a99K; in either case,940

(q, d) 2 E, which is a contradiction.

(G3) p 6= eP and d = eD: Here, (q, d) 2 E is an inherited error, which is a
contradiction.

(G4) (p, d)
a�!↵ R0 with R0 ✓ G: Our claim holds for all (p0, d0) 2 R0 by

induction hypothesis, and the transition is due to one of the (QMust)945

rules:
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(QMust1) p
a�! P 0, a /2 AD and R0 = P 0 ⇥ {d}: By q k d v p, we have

q k d
a�!k Q0 ⇥ {d} such that 8q02Q0 9p02P 0. q0 k d v p0. This is a

contradiction, since (p0, d) 2 R0.

(QMust2) p
a�! P 0, d

a�! d0 and R0 = P 0 ⇥ {d0}: q k d v p implies the950

existence of a Q0 with q
a�! Q0 and 8q02Q0 9p02P 0. q0 k d0 v p0. This

is again a contradiction since (p0, d0) 2 R0.

(QMust3) eP /2 mayP (p, a) 6= ;, R0 = mayP (p, a) ⇥ {d0}, d a99K d0 and
a 2 OD: Since q k d is defined, we have some q

a�! Q0; otherwise,
we would have (q, d) 2 E. Thus, by the definition of illegal states,955

also q0 k d0 must be defined for some (and in fact all) q0 2 Q0. Now,

q k d a99Kk q0 k d0 must be matched by some p
a99K p0 due to q k d v p,

and we have q0 kd0 v p0. This is again a contradiction as (p0, d0) 2 R0.

Claim 2: For all (q, d) 2 E, q v p//d does not hold for any p 2 P with
p 6= eP , possibly because p//d is not defined. We prove this by induction on the960

length of a local path from (q, d) to an error in Q⌦D; here, all actions on the
path are outputs. In each case, we assume q v p//d for some p 2 P with p 6= eP
and derive a contradiction.

(Base) Let (q, d) be an error according to Def. 8.

(a) q
a99K q0, d 6 a�! and a 2 OQ \ ID: Here, q v p//d implies a transition965

(p, d)
a99K↵ (p0, d0). But, such a transition cannot exist since none

of the (QMay) rules applies; note that a 2 OP \ ID for (QMay3)
and (QMay5) and that eP 2 mayP (p, a) implies a 2 IP , which con-
tradicts a 2 OQ, for (QMay4).

(b) q 6 a�!, d
a99K d0 and a 2 IQ \ OD: As just noted, a 2 OP implies970

eP /2 mayP (p, a). Since (G2) does not apply, we have mayP (p, a) 6= ;.
Thus, we get p//d

a�!// by (QMust3), contradicting q v p//d and

q 6 a�!.

(c) (q, d) is an inherited error: If q = eQ, then p//d = eP//D by q v p//d,
and we have p = eP . If d = eD, then Rule (G3) and the definedness975

of p//d imply p = eP . Both cases contradict p 6= eP .

(Step) Assume (q, d)
a99K⌦ (q0, d0) 2 E with a 2 OQ⌦D such that our claim

holds for (q0, d0) by induction. We consider the di↵erent rules that resulted
in this transition.

(PMay1) a /2 AD, d0 = d and q
a99K q0: By q v p//d, there is a tran-980

sition p//d
a99K// p0//d00 such that q0 v p0//d00. The only applicable

Rule (QMay1) (note that a 2 OP ) implies d00 = d and p0 6= eP .
Thus, we have q0 v p0//d, contradicting the claim for (q0, d0).

(PMay2) a /2 AQ, q0 = q and d
a99K d0: We have a 2 AD ✓ AP =

AP↵D = AQ, which is a contradiction.985
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(PMay3) q
a99K q0 and d

a99K d0: By q v p//d, there is a transition

p//d
a99K// p0//d00 such that q0 v p0//d00. The only rules that are

applicable are (QMay2) and (QMay3) (note that a 2 OP ). Both
rules imply p0 6= eP and, by may-determinism of D, d00 = d0. Thus,
we have q0 v p0//d0, contradicting the claim for (q0, d0).990

Theorem 30 (// is a Quotient Operator wrt. k). Let P and D be a quotient
pair and Q be a MIA such that AD ✓ AP , OD ✓ OP , OQ = OP \ OD and
IQ = IP [OD. Then, Q v P//D i↵ Q kD v P .

Proof. We use the same shorthands as in Lem. 29. If p0 = eP , then p0//d0 =
eP//D and both sides of the theorem’s statement are simply true. For p0 6= eP995

we have: If P//D is defined, then also p0//d0 and, by Lem. 29, q0 k d0 is defined.
If QkD v P , then the initial state of QkD is q0kd0 6= eQkD because of p0 6= eP ;
with q0 k d0 also p0//d0 is defined by Lem. 29. Therefore, it su�ces to establish
the refinements.

“)”: We show that R =df {(qkd, p) 2 (QkD) ⇥ P | q v p//d or p = eP } [1000

{(eQkD, eP )} is a MIA-refinement relation. We only have to consider a
(qkd, p) 2 R with p 6= eP . Note that Cases (iii) and (v) are mostly
analogous to Cases (ii) and (iv), resp.

(i) From p 6= eP we conclude, by q v p//d and Lem. 29, that q k d exists,
i.e., it is not the universal state.1005

(ii) p
i�! P 0 for i 2 IP :

1. If i 2 AD and d
i�! d0, then (QMust2) implies (p, d)

i�!↵
P 0⇥{d0}. In P//D, the target set might only be a subset P 00⇥{d0}
of P 0 ⇥ {d0}. By q v p//d, we have q

i�! Q0 for some Q0 such
that 8q02Q0 9p02P 00. q0 v p0//d0, whence (q0kd0, p0) 2 R; note that1010

p0 6= eP since, otherwise, eP 2 P 0. Now, by (PMust3), there is a

transition (q, d)
i�!⌦ Q0⇥{d0}. Since, for all (q0, d0) 2 Q0⇥{d0},

there is some p0 2 P 00 with q0 v p0//d0, we also have q k d
i�!k

Q0 ⇥ {d0} by Lem. 29.

To see the latter, note that it is impossible that (q, d)
i99K⌦1015

(q̄, d0) 2 E, for some q̄ 2 Q0. This is because of the following

reasons. If (q, d)
i99K⌦ (q̄, d0) 2 E, then q

i99K q̄ by IP ✓ IQ.

Since q v p//d, we have p//d
i99K// p̄//d̄ for some p̄ with q̄ v p̄//d̄,

which can only be due to (QMay2). Observe that (QMay4) is
excluded by P and D being a quotient pair, and that (QMay5) is1020

excluded due to d
i99K. In the remaining case (QMay2) we have

p
i99K p̄ 6= eP and d̄ = d0 due to may-determinism of D; further,

Lem. 29 implies (q̄, d0) /2 E.

2. If i 2 AD and d 6 i�!, then (p, d) 2 G by (G1), which is impossible
since p//d is defined.1025
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3. If i /2 AD, the proof is analogous to Case 1 with d = d0, when
replacing (QMust2) by (QMust1) and (PMust3) by (PMust1).

(iii) p
o�! P 0 for o 2 OP : Here, the same arguments as for (ii) apply.

(iv) q k d
i99Kk and i 2 IP = IQkD: Consider (a) q k d

i99Kk q0 k d0 or

(b) q k d
i99Kk eQkD for i 2 IQkD. In both cases (q, d)

i99K⌦ (q0, d0)1030

by one of (PMay1) or (PMay3), and (q0, d0) 2 E in case of (b).
Rule (PMay2) is impossible as AQ = AP ◆ AD.

(PMay1) q
i99K q0 and i /2 AD: We have d = d0, and q v p//d implies

p//d
i99K// p0//d00 for some p0, d00 such that q0 v p0//d00. Since

i /2 AD, we get either d = d00 and p
i99K p0 6= eP by (QMay1),1035

or p
i99K p0 = eP by (QMay4). In the latter case, we have

(q0kd0, eP ) 2 R for Case (a) and (eQkD, eP ) 2 R for Case (b). In
the former case (QMay1), we have (q0kd0, p0) 2 R for Case (a)
since q0 v p0//d0. Case (b) is impossible because q0 k d0 /2 E by
Lem. 29, q0 v p0//d0 and p0 6= eP .1040

(PMay3) q
i99K q0 and d

i99K d0: Since q v p//d we conclude

p//d
i99K// p0//d00 for some p0, d00 with q0 v p0//d00. This can

be due to (QMay2), (QMay3) or (QMay4); in all cases we have

p
i99K p0. In case (QMay4), we have p0 = eP and (q0kd0, eP ) 2 R

for Case (a) and (eQkD, eP ) 2 R for Case (b). In the other Cases,1045

we have d00 = d0 by may-determinism and p0 6= eP ; the proof now
concludes like Case (QMay1) above.

(v) qkd o99Kk and o 2 OP = OQkD: This case is already covered by (iv)(a),
where the subcase due to (QMay4) does not apply.

“(”: We show that R =df {(q, p//d) 2 Q⇥ (P//D) | q k d v p or p//d = eP//D}1050

is a MIA-refinement relation. It su�ces to consider some (q, p//d) 2 R
with p//d 6= eP //eD. In the following, the arguments for (iii) are analogous
to those for (ii).

(i) Since (q, d) /2 E, we have q 6= eQ.

(ii) p//d
i�!// R0 ✓ P 0 ⇥ {d0} for i 2 IP//D, where (p, d)

i�!↵ P 0 ⇥ {d0}1055

is due to one of the (QMust) rules, and R0 consists of the possible
states of P 0 ⇥ {d0}. In the following, we use AP = AQ throughout.

(QMust1) p
i�! P 0, d = d0 and i /2 AD: By q k d v p, we

hav a transition q k d
i�!k Q0 ⇥ {d00} for some Q0, d00 with

8q02Q0 9p02P 0. q0 k d00 v p0. Since i /2 AD, this transition can1060

only be due to Rule (PMust1) and d00 = d. By Lem. 29, q0kd v p0

implies that p0//d is not impossible, hence p0//d 2 R0. Thus, we

are done due to q
i�! Q0.
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(QMust2) p
i�! P 0 and d

i�! d0: By q k d v p, we get q k d i�!k
Q0 ⇥ {d0} for some Q0 such that 8q02Q0 9p02P 0. q0 k d0 v p0. The1065

transition must result from (PMust3). Thus, we are done as
in (QMust1).

(QMust3) P 0 = mayP (p, a) and d
i99K d0 with i 2 OD: Because qkd

is defined and i 2 IQ \OD, we have q
i�! Q0 for some Q0. Now,

Rule (PMay3) gives us (q, d)
i99K⌦ (q0, d0) for all q0 2 Q0. Since1070

i 2 OQ⌦D and (q, d) /2 E, we also know that (q0, d0) /2 E, hence

q k d i99Kk q0 k d0. By q k d v p we have 8q0 2 Q09p0 2 P 0. p
i99K p0

and q0 k d0 v p0. As above, p0//d0 2 R0 and q
i�! Q0 matches

p//d
i�!// R0.

(iii) p//d
o�!// R0 with o 2 OP//D = OP \ OD: The same arguments as1075

for (ii) apply, except that Rule (QMust3) is not applicable due to
o /2 OD.

(iv) q
i99K q0 for i 2 IQ:

1. i /2 AD: By (PMay1) we have (q, d)
i99K⌦ (q0, d). Thus, either

qkd i99Kk eQkD or qkd i99Kk q0kd. In the first case we get p
i99K eP ,1080

because of q kd v p, and (p, d)
i99K↵ (eP , eD) by (QMay4). Since

(eP , eD) can never be impossible, we have p//d
i99K// eP //eD and

are done. For the second case, q k d i99Kk q0 k d, we get p
i99K p0

for some p0 with q0 k d v p0, because of q k d v p. If p
i99K

eP , we conclude as above. Otherwise, we get (p, d)
i99K↵ (p0, d)1085

by (QMay1). Lem. 29 implies the definedness of p0//d, hence

p//d
i99K// p0//d, and we are done.

2. i 2 AD and d 6 i99K: By p 6= eP and i 2 AD \OQ = AD \(OP \ID),

we get (p, d)
i99K↵ (eP , eD) by (QMay5). Since (eP , eD) can never

be impossible, we have p//d
i99K// eP //eD and are done.1090

3. i 2 AD and d
i99K d0: By (PMay3), a transition (q, d)

i99K⌦ (q0, d0)

exists. Thus, either q k d i99Kk eQkD (only possible, if i 2 ID) or

q k d
i99Kk q0 k d0 (ensured, if i 2 OD, since q k d defined). The

first case is as in Case (iv).1. Also the second case is analogue
to Case (iv).1, except for (QMay3) instead of (QMay1); for this,1095

note that i 2 ID implies i /2 OP by i 2 IQ.

(v) q
o99K q0 for o 2 OQ:

1. o 2 AD: We have d
o�! d0 for some d0; otherwise, q k d would

not exist. By (PMay3) we have (q, d)
o99K⌦ (q0, d0), and hence
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q k d o99Kk q0 k d0 by definedness of q k d. By q k d v p, we obtain1100

p
o99K p0 for some p0 with q0 k d0 v p0. Since o 2 OP , we conclude

p0 6= eP and can then apply (QMay2) to get (p, d)
o99K↵ (p0, d0).

Lem. 29 implies the definedness of p0//d0, hence p//d
o99K// p0//d0

and we are done.

2. o /2 AD: q k d
o99Kk q0 k d by (PMay1) and definedness of q k d;1105

hence, due to q k d v p, there is a p
o99K p0 for some p0 with

q0 kd v p0. Now we are done as in Case (v).1, applying (QMay1)
instead of (QMay2).

From this theorem we can also conclude that // is monotonous wrt. v in the left
argument.1110

Theorem 31 (Monotonicity of // wrt. v). Let P1, P2, D be MIAs with P1 v P2.
If P1//D is defined and P2 and D are a quotient pair, then P2//D is defined and
P1//D v P2//D.

Proof. If P1//D is defined, then (P1//D) k D v P1 by Thm. 30. Applying the
assumption P1 v P2, transitivity of v and Thm. 30 again, we conclude that1115

P1//D v P2//D; in particular, P2//D is also defined.

4.2. Discussion

We conclude this section by discussing the choice of alphabet for the quotient
Q = P//D, argue why its input alphabet may be chosen di↵erently, and conclude
with some remarks on quotienting for Modal Interfaces (MI) [10] and Modal1120

Transition Systems [20].
For Q kD v P to hold, Q kD and P must have the same input alphabet

and the same output alphabet. Thus, we have OQ = OP \OD and IQ ◆ IP \ID.
Concerning the actions of D, quotient Q may listen to them but does not have
to. Hence, IQ ✓ (IP \ ID) [AD = IP [OD. The more inputs Q has, the easier1125

it is to supply the behaviour ensuring Q k D v P . Thus, we have chosen the
largest possible input alphabet IP [ OD for our quotient P//D, just as in [28]
and [10]. When comparing some Q to P//D in Thm. 30, Q necessarily has the
same input and output alphabets as P//D, by Def. 4.

Quotient operators for interface theories are also discussed by Raclet [19],1130

Raclet et al. [10] and Chilton et al. [7]. Our quotient Q = P//D is most similar
to the one in MI [10], where D is assumed to be may-deterministic, P and D
have no internal transitions, and IQ = IP [ OD. However, P must also be
may-deterministic in [10], whereas we additionally allow nondeterminism and
disjunctive must-transitions in P .1135

In addition, we have corrected some technical shortcomings of MI. MI adapts
the quotient operation for Modal Specifications from [19], with some additional
rules defining the input and output alphabets of the quotient interface. However,
compatibility is ignored for the quotient operation, which in [10] is an inverse
or adjoint to their parallel product but not to parallel composition. This has1140

been recognised in a technical report [16]. Unfortunately, that report employs
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a changed setting without the state tt as in [10] or a universal state as in our
work. This is reflected by a di↵erent, non-compositional parallel composition
that does not allow arbitrary behaviour in case of an inconsistency and that
employs a more aggressive pruning strategy, where a mismatch can also occur1145

if two systems share an input.
Beneš et al. [20] investigate quotienting for nondeterministic specifications

in the settings of Modal Transition Systems (MTS) and Nondeterministic Ac-
ceptance Automata (NAA). They address nondeterminism by constructing sets
of possible next quotient states for each transition label. In principle, a similar1150

solution would be necessary in order to relax our determinism requirement on
the denominator. However, it is not straightforward to adopt this solution in
the context of internal transitions and input/output with the related compati-
bility issues, which are core ingredients of interface theories being present since
the very first publications on IA by de Alfaro and Henzinger. Not considering1155

input/output simplifies the quotient because a significantly simpler composition
operator is involved, which corresponds more to our parallel product than our
parallel composition. In addition, Beneš et al. assume a single global alphabet
and do not consider alphabet extension, which is particularly di�cult for the
quotient, as discussed in Sec. 6.1160

5. Conjunction and Disjunction

Besides parallel composition and quotienting, conjunction is one of the most
important operators of interface theories. It allows one to specify di↵erent
perspectives of a system separately, from which an overall specification can be
determined by conjunctive composition. More formally, the conjunction should1165

be the coarsest specification that refines the given perspective specifications,
i.e., it should characterise the greatest lower bound of the refinement preorder.
In the following, we define conjunction for MIAs with common alphabets, as
we did for MIA refinement. Similar to parallel composition, we first present a
conjunctive product and, in a second step, remove state pairs with contradictory1170

specifications.

Definition 32 (Conjunctive Product). Consider MIAs (P, I,O,�!P , 99KP ,
p0, eP ) and (Q, I,O,�!Q, 99KQ, q0, eQ) with common alphabets. The conjunc-
tive product is defined as P&Q =df (P ⇥Q, I,O,�!, 99K, (p0, q0), (eP , eQ)) by
the following operational transition rules:1175

(OMust1) (p, q)
!�! {(p0, q0) | p0 2 P 0, q

!̂
=)Q q0} if p

!�!P P 0 and q
!̂

=)Q

(OMust2) (p, q)
!�! {(p0, q0) | p !̂

=)P p0, q0 2 Q0} if p
!̂

=)P and q
!�!Q Q0

(IMust1) (p, q)
i�! {(p0, q0) | p02 P 0, q

i99K "
=)Q q0} if p

i�!P P 0 and q
i99KQ

(IMust2) (p, q)
i�! {(p0, q0) | p i99K "

=)P p0, q02 Q0} if p
i99KP and q

i�!Q Q0

(EMust1) (p, eQ)
↵�! P 0 ⇥ {eQ} if p

↵�!P P 0

(EMust2) (eP , q)
↵�! {eP }⇥Q0 if q

↵�!Q Q0
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P : p0

p00

p1

p01

p2

p02

· · ·

· · ·

⌧ ⌧

o o o

Q: q0 q1
o

Figure 6: Example of a conjunction leading to a transition with an infinite target set.

(May1) (p, q)
⌧99K (p0, q) if p

⌧
=)P p0

(May2) (p, q)
⌧99K (p, q0) if q

⌧
=)Q q0

(OMay) (p, q)
!99K (p0, q0) if p

!
=)P p0 and q

!
=)Q q0

(IMay) (p, q)
i99K (p0, q0) if p

i99K "
=)P p0 and q

i99K "
=)Q q0

(EMay1) (p, eQ)
↵99K (p0, eQ) if p

↵99KP p0

(EMay2) (eP , q)
↵99K (eP , q0) if q

↵99KQ q0

Note that this definition is similar to the one in [12], except for the treatment of
inputs and the universal state. The conjunctive product is inherently di↵erent
from the parallel product: single transitions are defined through weak transi-1180

tions, e.g., as in Rules (OMust), (IMust), (May), and ⌧ -transitions synchronise
by Rule (OMay). Furthermore, as given by Rules (EMust) and (EMay), the
universal states are neutral elements for the conjunctive product, whereas they
are absorbing for the parallel product.

Definition 33 (Conjunction). Given a conjunctive product P&Q, the set F ✓1185

P ⇥Q of (logically) inconsistent states is defined as the least set satisfying the
following rules for all p 6= eP and q 6= eQ:

(F1) p
o�!P and q 6 o=) Q implies (p, q) 2 F

(F2) p 6 o=) P and q
o�!Q implies (p, q) 2 F

(F3) p
i�!P and q 6 i99KQ implies (p, q) 2 F

(F4) p 6 i99KP and q
i�!Q implies (p, q) 2 F

(F5) (p, q)
↵�! R0 and R0 ✓ F implies (p, q) 2 F

The conjunction P ^Q is obtained (analogously to Def. 28) by deleting all states
(p, q) 2 F from P&Q. This also removes any may- or must-transition exiting1190

a deleted state and any may-transition entering a deleted state; in addition,
deleted states are removed from targets of disjunctive must-transitions. We write
p ^ q for state (p, q) of P ^Q; all such states are defined – and consistent – by
construction. However, if (p0, q0) 2 F , then the conjunction of P and Q does
not exist.1195

Note that the weak transitions in Rules (OMust) and (IMust) may lead to dis-
junctive transitions with infinite target sets, which were prohibited in [1]. For
example, consider the conjunction of the MIAs P and Q depicted in Fig. 6.
Infinitely many weak o-transitions start from p0, yielding an infinite disjunctive
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R1:

0

1

2

resp!, rqst1!,
rqst2!

rqst?

rqst1! rqst2!

sel!

R2:

0

1 2

resp!, rqst1!,
rqst2!

sel! sel!

rqst1! rqst2!

R1,2 = R1 ^R2:

(0, 0)

(1, 0)

(2, 1) (2, 2)

rqst1!,
rqst2!, resp!

rqst?

sel!

rqst1! rqst2!

Figure 7: Conjunction of MIAs may lead to disjunctive transitions.

o-transition at p0 ^ q0 due to Rule (OMust2). We addressed this issue by gen-1200

eralising MIAs (cf. Def. 1) to allow infinite target sets of must-transitions and
by adapting Def. 2 accordingly. Note that the abovementioned problem arises
only for an infinite-state MIA (cf. P in Fig. 6) and is not a problem in practice,
where MIAs are expected to be finite state.

An example of conjunction is given in Fig. 7. It shows the requirement for a1205

server front-end that shall route between a client and at least one of two possible
back-ends. In practice, one might specify this requirement directly as MIA R1,2.
Here, we specify it as two separate MIAs R1 and R2 solely to illustrate con-
junction. Requirement R1 states that the selection (sel!) of a back-end must be
made after a client’s request is received (rqst?). After that selection, the only1210

possibility is to redirect the request to one of the back-ends (rqst1!, rqst2!). The
loops in state 0 are necessary in order to not constrain the corresponding actions
overly, since they might be used by other requirements. Action resp! is included
in R1 to prevent an early abortion in states 1 and 2; otherwise, a response could
be sent to the client before a back-end is contacted. Requirement R2 makes1215

sel! a true selection. Once the selection is made, the request is forwarded either
to B1 or to B2 (rqst1!, rqst2!). Together, requirements R1 and R2 ensure that at
least one of the back-ends will be contacted. This is expressed in the conjunction
R1,2 = R1^R2, where the selection process (sel!) is given by a disjunctive must-
transition, although none of the conjuncts has a disjunctive transition. This is1220

due to the combination of modalities with nondeterminism and cannot be ex-
pressed in a deterministic theory, such as in Modal Interfaces [10] which our
theory extends. Although one might approximate the disjunctive sel! by indi-
vidual selection actions sel1! and sel2! for each back-end, the conjunction would
either have both actions as may-transitions and, thus, allow one to omit both,1225

or would have both actions as must-transitions, disallowing a server application
with only one of the back-ends.

Next, we prove that conjunction as defined above is the greatest lower bound
wrt. MIA refinement. To this end, we introduce the notion of a witness as in [12]:

Definition 34 (Witness). A witness W of P&Q is a subset of P ⇥Q such that1230
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the following conditions hold for all (p, q) 2 W :

(W1) p
o�!P implies q

o
=)Q or q = eQ

(W2) q
o�!Q implies p

o
=)P or p = eP

(W3) p
i�!P implies q

i99KQ or q = eQ

(W4) q
i�!Q implies p

i99KP or p = eP
(W5) (p, q)

↵�! R0 implies R0 \W 6= ;

Intuitively, a witness is a set of state pairs that are consistent and, thus, it
witnesses the existence of a conjunction.

Lemma 35 (Concrete Witness). Let P , Q and R be MIAs with common al-1235

phabets.

1. For any witness W of P&Q, we have F \W = ;.

2. The set {(p, q) 2 P ⇥Q | 9r 2 R. r v p and r v q} is a witness of P&Q.

Proof. While the first statement of the lemma is quite obvious, we prove here
that W =df {(p, q) 2 P ⇥Q | 9r 2 R. r v p and r v q} is a witness of P&Q:1240

(W1) p
o�!P P 0 implies r

o
=)R R0 for some R0 by r v p. Choose some r0 2 R0.

Then, r
o

=)R r0 by syntactic consistency, and q
o

=)Q or q = eQ by r v q.

(W2) Analogous to (W1).

(W3) Similar to (W1) with o replaced by i, =) by �! "
=), and =) by

99K "
=).1245

(W4) Analogous to (W3).

(W5) Consider (p, q) 2 W due to r, with (p, q)
!�! S0 because of p

!�!P P 0 and

S0 = {(p0, q0) | p02P 0, q
!̂

=)Q q0} by (OMust1). By r v p and p 6= eP , we

get an R0 ✓ R with r
!̂

=)R R0 and 8r02R0 9p02P 0. r0 v p0. Choose r02R0;

now, r
!̂

=)R r0 due to syntactic consistency, and q
!̂

=)Q q0 with r0 v q01250

by r v q; this also holds if q = eQ and ! = ⌧ . Thus, we have p0 2 P 0

and q0 such that (p0, q0) 2 S0 \ W due to r0. The same line of argument
works for inputs with trailing-weak instead of weak transitions and using
(IMust1) instead of (OMust1). The remaining case concerns transitions
(p, eQ)

↵�! S0 because of p
↵�!P P 0 and S0 = P 0 ⇥ {eQ} by (EMust1).1255

Choose some p0 2 P 0; then, (p0, eQ) 2 S0 \W due to r v p.

On the basis of this lemma we can now establish the desired greatest lower
bound result for ^, which implies the compositionality of v wrt. ^ (cf. [12]).

Theorem 36 (^ is And). Let P and Q be MIAs with common alphabets.

1. (9R. R v P and R v Q) i↵ P ^Q is defined.1260
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2. If P ^Q is defined, then R v P and R v Q i↵ R v P ^Q, for any R.

Note that MIA R is implicitly required to have the same alphabets as P and Q,
by Def. 4.

Proof. Claim 1 “)”: This follows from Lem. 35.

Claims 1 and 2 “(”: It su�ces to show that R =df {(r, p) | 9q. r v p ^ q} is a1265

MIA-refinement relation. Then, in particular, Claim 1 “(” follows by choosing
R = P ^Q. Furthermore, note that (EMust1) and (EMay1) essentially produce
an isomorphic copy of P . The refinement conditions for states (r, p) 2 R due to
q = eQ hold by definition of R, and we can ignore these rules in the rest of this
proof.1270

We check the conditions of Def. 4 for some (r, p) 2 R due to q, where p 6= eP :

• p 6= eP implies p ^ q 6= eP ^ eQ. By r v p ^ q, we have r 6= eR.

• Let p
↵�!P P 0; then, q

↵̂
=)Q. For ↵ 6= ⌧ , this is because, otherwise,

p^ q would not be defined due to (F1). Hence, by (OMust1) (or similarly

(IMust1)), p ^ q
↵�! {p0 ^ q0 | p0 2 P 0, q

↵̂
=)Q q0, p0 ^ q0 defined}. By1275

r v p ^ q, we get r
↵̂

=)R R0 such that 8r02R0 9p0^q0. p0 2 P 0, q
↵̂

=)Q q0

and r0 v p0^q0. Thus, 8r02R0 9p02P 0. (r0, p0) 2 R.

• r
↵99KR r0 implies 9p0^q0. p^q ↵̂

=) p0^q0 and r0 v p0^q0. The contribution
of p in this weak transition sequence gives p

↵̂
=)P p0, and, thus, we have

(r0, p0) 2 R due to q0.1280

Claim 2 “)”: Here, we show that R =df {(r, p ^ q) | r v p and r v q} is a MIA-
refinement relation; by Claim 1, p ^ q is defined whenever r v p and r v q. As
above, the (EMust) and (EMay) rules do not need to be checked, in particular,
since r0 v eQ for all r0. We now verify the conditions of Def. 4:

• If p ^ q 6= eP ^ eQ, then w.l.o.g. p 6= eP . By r v p, we also have r 6= eR.1285

• Let p ^ q
↵�! S0; in case of ↵ 2 O [ {⌧} and w.l.o.g., this is due to

p
↵�!P P 0 and S0 = {p0^q0 | p0 2 P 0, q

↵̂
=)Q q0, p0 ^ q0 defined}. Because

of r v p, we have r
↵̂

=)R R0 so that 8r02R0 9p02P 0. r0 v p0. Consider some

arbitrary r0 2 R0 and the resp. p0 2 P 0. Then, r
↵̂

=)R r0 by syntactic
consistency and, due to r v q and Prop. 5, there exists some q0 with1290

q
↵̂

=)Q q0 and r0 v q0. Thus, p0 ^ q0 2 S0 and (r0, p0 ^ q0) 2 R. In case
of ↵ 2 I, we follow the same line of arguments, where we simply replace
weak transitions by trailing-weak transitions.

• Let r
↵99KR r0, for ↵ 2 O [ {⌧}, and consider p

↵̂
=)P p0 and q

↵̂
=)Q q0

satisfying r0 v p0 and r0 v q0. Thus, (r0, p0 ^ q0) 2 R. Further, if ↵ 6= ⌧ ,1295

we have p ^ q
↵99K p0 ^ q0 by (OMay). Otherwise, either p

⌧
=)P p0 and
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q
⌧

=)Q q0 and we are done by (OMay), or w.l.o.g. p
⌧

=)P p0 and q = q0

and we are done by (May1), or p = p0 and q = q0. In case of ↵ 2 I,
we follow the same line of arguments as for ↵ 2 O, where we replace
weak transitions by trailing-weak transitions and use (IMay) instead of1300

(OMay).

Corollary 37. MIA refinement is compositional wrt. conjunction.

Clearly, conjunction is commutative. Furthermore, any conjunction operator
that satisfies the statement of Thm. 36 for some preorder v is associative.

Lemma 38. Let P , Q, R and S be MIAs.1305

1. P ^ (Q ^R) is defined i↵ (P ^Q) ^R is defined.

2. If P ^ (Q ^R) is defined, then S v P ^ (Q ^R) i↵ S v (P ^Q) ^R.

Proof. 1. Thm. 36.1, 36.2 imply that P^(Q^R) is defined i↵ 9S. S v P and S v
Q ^ R i↵ 9S. S v P and S v Q and S v R i↵ 9S. S v P ^ Q and S v R i↵
(P ^ Q) ^ R is defined. Claim 2 follows directly from multiple applications of1310

Thm. 36.2.

As a consequence of Lem. 38 we obtain strong associativity of conjunction.

Theorem 39 (Associativity of Conjunction). Conjunction is associative in the
sense that, if one of P ^(Q^R) and (P ^Q)^R is defined, then both are defined
and P ^ (Q ^R) wv (P ^Q) ^R.1315

We now turn our attention to disjunction _ on MIAs with the same alphabets
and show that _ corresponds to the least upper bound of MIA refinement.
Disjunction may be used in systems design for expressing alternatives, e.g., in
the context of product families.

Definition 40 (Disjunction). Given two MIAs (P, I,O,�!P , 99KP , p0, eP ) and1320

(Q, I,O, �!Q, 99KQ, q0, eQ) with common input and output alphabets. Writing
also e for eP _ eQ, the disjunction P _ Q is defined as ({e}, I, O, ;, ;, e, e) if
p0 = eP or q0 = eQ. Otherwise, and assuming disjoint state sets, P _ Q =
({p0_q0, e}[P[Q, I,O,�!, 99K, p0_q0, e), where �! and 99K are the least sets
satisfying the conditions �!P ✓ �!, 99KP ✓ 99K, �!Q ✓ �!, 99KQ ✓ 99K,1325

and the following rules:

(Must) p0 _ q0
⌧�! {p0, q0} if p0 6= eP and q0 6= eQ

(IMust) p0 _ q0
i�! P 0 [Q0 if p0

i�!P P 0 and q0
i�!Q Q0

(May) p0 _ q0
⌧99K p0, p0 _ q0

⌧99K q0 if p0 6= eP and q0 6= eQ

(IMay1) p0 _ q0
i99K p0 if p0

i99KP p0

(IMay2) p0 _ q0
i99K q0 if q0

i99KQ q0

Further, for each input may-transition to eP or eQ, the target is replaced by e.
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It is not di�cult to see that disjunction is commutative and associative. The
latter follows from the dual statement to Thm. 36, namely that _ is indeed1330

disjunction.

Theorem 41 (_ is Or). Let P , Q and R be MIAs with common alphabets.
Then, P _Q v R i↵ P v R and Q v R.

Proof. If, say, p0 = eP , then both sides imply r0 = eR, which implies Q v R in
any case. So we can assume that neither p0 = eP nor q0 = eQ.1335

“=)”: We establish w.l.o.g. that R =df {(p0, r) | p0 _ q0 v r} [ v is a MIA-
refinement relation. To do so, we let (p0, r) 2 R and check the conditions of
Def. 4:

(i) If r 6= eR, then p0 _ q0 6= e; thus, p0 6= eP .

(ii) Let r
i�!R R0. Because of p0 _ q0 v r and by the only applicable1340

Rule (IMust), we have p0 _ q0
i�! "
=) P 0 [Q0, due to p0

i�! "
=)P P 0 and

q0
i�! "
=)Q Q0, such that 8p0 2P 0 [Q0 9r0 2R0. p0 v r0; recall P \Q = ;.

Hence, 8p0 2P 0 9r0 2R0. p0 v r0 and, thus, (p0, r0) 2 R.

(iii) Let r
!�!R R0. By p0 _ q0 v r, we get p0 _ q0

!̂
=) S0 for some S0

such that 8s2S0 9r02R0. s v r0. If p0 _ q0
!

=) S0, then the transition1345

sequence underlying this weak transition starts with p0 _ q0
⌧�! {p0, q0},

and the remainder can be decomposed showing p0
!̂

=)P P 0, q0
!̂

=)Q Q0

and S0 = P 0 [Q0. Because 8p02P 0 9r02R0. p0 v r0, we are done now. The
only remaining case is ! = ⌧ and S0 = {p0 _ q0}, in which there is some
r0 2 R0 such that p0 _ q0 v r0, i.e., (p0, r0) 2 R. Hence, we are done in1350

this case, too, since p0
⌧̂

=)P p0.

(iv) Let p0
i99KP p0. Then, p0 _ q0

i99K p0 and, due to p0 _ q0 v r, we obtain

some r0 with r
i99K "
=)R r0 and p0 v r0 by Def. 4(iv).

(v) Let p0
!99KP p0. Then, p0 _ q0

⌧99K p0 and, due to p0 _ q0 v r, we apply

Def. 4(v) twice to obtain some r0 with r
!̂

=)R r0 and p0 v r0.1355

“(=”: We prove that R =df {(p0 _ q0, r) | p0 v r and q0 v r}[ v is a MIA-
refinement relation; consider (p0 _ q0, r) with r 6= eR.

(i) Since r 6= eR, we have p0 6= eP and q0 6= eQ; thus, p0 _ q0 6= e.

(ii) Let r
i�!R R0. By p0 v r and q0 v r, we have P 0 and Q0 satisfying

p0
i�! "
=)P P 0, q0

i�! "
=)Q Q0 such that 8p02P 0 9r02R0. p0 v r0 and1360

8q02Q0 9r02R0. q0 v r0. Thus, p0 _ q0
i�! "
=) P 0 [Q0 using Rule (IMust)

and applying Def. 2;recall that P \Q = ;.
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(iii) Let r
!�!R R0. By p0 v r and q0 v r we have P 0, Q0 such that p0

!̂
=)P P 0,

q0
!̂

=)Q Q0 and 8p0 2 P 0[Q0 9r02R0. p0 v r0. Hence, p0 _ q0
!̂

=) P 0 [ Q0

due to Rule (Must) and Def. 2.1365

(iv) Let p0 _ q0
i99KQ. Then, w.l.o.g., we only need to consider p0

i99KP p0, and

because p0 v r we have r
i99K "
=)R r0 for some r0 satisfying p0 v r0.

(v) Let p0 _ q0
!99K. This is only possible for ! = ⌧ . W.l.o.g. we only need to

consider p0 _ q0
⌧99K p0. This transition is matched with r

"
=)R r since

p0 v r.1370

Corollary 42. MIA refinement is compositional wrt. disjunction.

6. Alphabet Extension

So far, MIA refinement is only defined on MIAs with the same alphabets.
This is insu�cient for supporting perspective-based specification, where an over-
all specification is conjunctively composed of smaller specifications, each ad-1375

dressing one ‘perspective’ (e.g., a single system requirement) and referring only
to actions that are relevant to that perspective. Hence, it is useful to extend
conjunction and thus MIA refinement to dissimilar alphabets in such a way that
we can add new inputs and outputs in a refinement step. For this purpose we
introduce alphabet extension as an operation on MIAs, similar to [12] for a pes-1380

simistic interface theory and also to weak extension in [10]. More precisely, we
add may-loops for all new actions to each state, except to the universal state.
Intuitively, the extended MIA can ignore all new actions while keeping control
over the old ones. To express this, it is important to have, in particular, input
may-transitions that determine how the MIA behaves subsequently. Such tran-1385

sitions were not available in the optimistic interface theory in [12]. Conjunction
and also disjunction are now easily generalised by applying alphabet extension
to the operands. The extended refinement preorder is compositional wrt. all
our operators, except for the quotient where the situation is more di�cult as
we discuss below.1390

Definition 43 (Alphabet Extension & Refinement). Given a MIA (P, I,O,�!,
99K, p0, e) and disjoint action sets I 0 and O0 satisfying I 0 \ A = ; = O0 \ A for
A =df I [O, the alphabet extension of P by I 0 and O0 is given by [P ]I0, O0 =df

(P, I [ I 0, O [ O0,�!, 99K0, p0, e) for 99K0 =df 99K [ {(p, a, p) | p 2 P \ {e}, a 2
I 0 [ O0}. We often write [p]I0, O0 for p as state of [P ]I0, O0 , or conveniently [p]1395

in case I 0, O0 are understood from the context.
For MIAs P and Q with p 2 P , q 2 Q, IP ◆ IQ and OP ◆ OQ, we

define p v0 q if p v [q]IP \IQ, OP \OQ
. Since v0 extends v to MIAs with di↵erent

alphabets, we write v for v0 and abbreviate [q]IP \IQ, OP \OQ
by [q]P ; the same

notations are used for P and Q.1400
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As an aside we remark that our alphabet extension is di↵erent to the one pro-
posed by Ben-David et al. for Modal Transition Systems in [29], where unknown
actions are treated as internal actions. Doing so has the consequence, however,
that a state with an a-must-transition can be refined by a state that o↵ers a
b-must-transition followed by an a-must-transition, where b is a new action. In1405

the context of interface theories, if a is an input, this is undesirable. If a is
an output, the refinement is also not plausible for an input b since inputs are
not locally controlled. However, for an output b, the approach of [29] could be
considered for MIA, too.

It is easy to show that compositionality of parallel composition as in Thm. 151410

is preserved by the extended refinement relation as long as alphabet extension
does not yield new communications:

Theorem 44 (Compositionality of Parallel Composition). Let P1, P2, Q be
MIAs such that Q and P2 are composable and P1 v Q. Assume further that,
for I 0 =df I1 \ IQ and O0 =df O1 \OQ, we have (I 0 [O0) \A2 = ;. Then:1415

1. P1 and P2 are composable.

2. If Q and P2 are compatible, then so are P1 and P2 and P1 k P2 v Q k P2.

Proof. It is easy to see that the MIAs [Q]I0,O0 and P2 are composable due
to (I 0 [ O0) \ A2 = ;, which implies Claim 1. Furthermore, [Q]I0, O0 ⌦ P2 is
isomorphic to [Q⌦ P2]I0, O0 via mapping [q] ⌦ p2 7! [q ⌦ p2]. This is because1420

of (PMay1) in the definition of ⌦, since we only add “fresh” may-transitions
to each q 2 Q. The mapping also respects errors: new may-transitions with
label o 2 O0 cannot create new errors since o /2 I2, and no new i 2 I 0 has to
have a must-transition since i /2 O2. Thus, [q0] and p02 are compatible if q0
and p02 are; moreover, p01 v [q0]. Now, the result follows from Thm. 15.1425

It is obvious that new communications might result in an error and, therefore,
must be disallowed. Technically, if a 2 (A1 \AQ)\A2, then P1 kP2 might have
a new error if P1 performs a 2 O1 or cannot perform a 2 I1.

It is also easy to see that the generalised v is a precongruence for hiding
and restriction as well.1430

Proposition 45. Let P and Q be MIAs such that P v Q.

1. P/L v Q/L, for any set L of actions with L \ IP = ;.

2. P \ L v Q \ L, for any set L of actions with L \OP = ;.

Proof. We have P v [Q]P and, due to Prop. 22, P/L v [Q]P /L and P \ L v
[Q]P \ L. First, [Q]P /L and [Q/L]P/L di↵er only by additional ⌧ -loops in the1435

former, arising from o 2 (OP \OQ)\L; hence, they are related by wv. Second,
[Q]P \ L and [Q \ L]P\L are identical.

Similarly, [P ];,O0/O0 and P di↵er only by an additional ⌧ -loop at each state of
the former; thus:
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Proposition 46. Let P be a MIA and O0 \O = ;. Then, [P ];,O0/O0 wv P .1440

Now, we lift our conjunction operator to conjuncts with dissimilar alphabets:

Definition 47 (Lifting Conjunction). Let P , Q be MIAs, p 2 P and q 2 Q
such that IP \ OQ = ; = IQ \ OP . Then, p ^0 q =df [p]Q ^ [q]P and similarly
for P ^0 Q.

We simply write ^ for ^0 in the following. To be able to lift our main result,1445

Thm. 36, it is su�cient to establish that the alphabet extension operation is
a homomorphism for conjunction. The proof of Thm. 49 below follows exactly
the line of argument in [12].

Lemma 48. Let P with p 2 P and Q with q 2 Q be MIAs with common
alphabets. Consider the alphabet extensions by some I 0 and O0. Then:1450

1. p and q are consistent i↵ [p] and [q] are.

2. Given consistency, [p ^ q] wv [p] ^ [q].

Proof. For proving Claim 1, consider the mapping � : (p, q) 7! ([p], [q]), which
is a bijection between P&Q and [P ]&[Q]. We have (p, q) 2 FP&Q due to a 2 A
and (F1), (F2), (F3) or (F4) i↵ ([p], [q]) 2 F[P ]&[Q] due to a 2 A and (F1), (F2),1455

(F3) or (F4). Observe that (F1), (F2), (F3) and (F4) never apply to ([p], [q]) and
a 2 I 0 [O0, since there are no must-transitions labelled a. For the same reason,
Rules (OMust1), (OMust2), (IMust1), (IMust2), (EMust1) and (EMust2) are
never applicable for a and, thus, � is an isomorphism regarding must-transitions;
hence, (F5) is applicable exactly in the corresponding cases according to �.1460

Therefore, � is also a bijection between FP&Q and F[P ]&[Q].
For Claim 2, we can regard � also as a bijection between [P ^Q] and [P ]^[Q],

and establish each direction of wv separately:

• “v”: We show that � is a MIA-refinement relation, for which we con-
sider [p ^ q] and [p] ^ [q]. Cond. (i) of Def. 4 is trivial. Conds. (ii)1465

and (iii) are clear, because � is still an isomorphism on must-transitions.
Regarding Conds. (iv) and (v), we only have to consider ↵ 2 I 0 [ O0

and [p ^ q]
↵99K [p ^ q]. This transition can be matched by the transition

[p]^[q] ↵99K [p]^[q], which exists by (IMay), (OMay), (EMay1) or (EMay2).

• “w”: We show that also ��1 is a MIA-refinement relation. Take [p] ^ [q]1470

and [p ^ q]; again, Conds. (i), (ii) and (iii) are clear. Thus, we only have to

consider ↵ 2 I 0[O0 to establish Conds. (iv) and (v), so that [p]^ [q]
↵99K r

i↵ r = [p0] ^ [q0] for p
"

=) p0 and q
"

=) q0. Such a transition can be

matched by the transition [p ^ q]
↵99K [p ^ q]

"
=) [p0 ^ q0], where the weak

may-transition exists by (May1), (May2), (OMay), (IMay), (EMay1) or1475

(EMay2), or because p = p0 and q = q0.

Theorem 49 (^ is And). Let P , Q and R be MIAs such that IP \ OQ = ; =
IQ \OP , IR ◆ IP [ IQ and OR ◆ OP [OQ.
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1. There exists such an R with R v P and R v Q i↵ P ^Q is defined.

2. In case P ^Q is defined: R v P and R v Q i↵ R v P ^Q.1480

Proof. Recall that we denote by [·]P an extension with the additional actions
of P , and similarly for Q and R. Also note that, in the context of this theorem,
[[p0]Q]R = [p0]R and [[q0]P ]R = [q0]R.

Claim 1: If r0 v [p0]R and r0 v [q0]R, then [p0]R^[q0]R is defined by Thm. 36.
The latter conjunction equals [[p0]Q]R^[[q0]P ]R; hence, [p0]Q^[q0]P is defined by1485

Lem. 48, and this conjunction is p0 ^ q0 by definition. If [p0]Q ^ [q0]P is defined,
there exists R with the common alphabets of [P ]Q and [Q]P with r0 v [p0]Q
and r0 v [q0]P by Thm. 36. For this R, we have [p0]Q = [p0]R and [q0]P = [q0]R;
thus, r0 v p0 and r0 v q0 by definition.

Claim 2: Let p0 ^ q0 be defined. We reason as follows:1490

r0 v p0 and r0 v q0
i↵ r0 v [p0]R and r0 v [q0]R (by definition)
i↵ r0 v [p0]R ^ [q0]R (by Thm. 36)
i↵ r0 v [[p0]Q ^ [q0]P ]R (by Lem. 48 and note above)
i↵ r0 v p0 ^ q0 (by Defs. 43 and 47)

The situation for disjunction under alphabet extension is analogous to the one
above, but exploiting monotonicity of the alphabet extension operation wrt. v.

Definition 50 (Lifting Disjunction). Let P , Q be MIAs, p 2 P and q 2 Q such
that IP \ OQ = ; = IQ \ OP . Then, p _0 q =df [p]Q _ [q]P and similarly for1495

P _0 Q. Once again, we simply write _ for _0.

Lemma 51 (Monotonicity of [·]). Let P with p 2 P and R with r 2 R be MIAs
with common alphabets, as well as I 0 and O0 be suitable action sets for extending
them. Then, p v r i↵ [p] v [r].

Proof. Since we only add may-loops with a fresh label a for the extension,1500

it su�ces to observe for direction ”=)” and p v r that each may-transition

[p]
a99K [p] can be matched by [r]

a99K [r], or r = eR.

Theorem 52 (_ is Or). Let P , Q and R be MIAs such that IP \ OQ = ; =
IQ \ OP , IR ✓ IP [ IQ and OR ✓ OP [ OQ. Then, P _Q v R i↵ P v R and
Q v R.1505

Proof. The proof proceeds along the following chain of equivalences:

p0 _ q0 v r0
i↵ [p0]Q _ [q0]P v [[r0]P ]Q (by definition)
i↵ [p0]Q v [[r0]P ]Q and [q0]P v [[r0]P ]Q (by Thm. 41)
i↵ p0 v [r0]P and q0 v [r0]Q (by Lem. 51)
i↵ p0 v r0 and q0 v r0 (by definition)

We conclude this section by reconsidering our quotient operator. As discussed
in Sec. 4.2, there is some freedom in choosing the input alphabet of the quo-
tient P//D of a specification P and a divisor D, namely IP \ ID ✓ IP//D ✓1510
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P : {a, b}/{o, x, y}

p0
a? b?

o!

x!

o!

y!

D : {a, b}/{o}

d0
a? b?

o! o!

Q0 : {a, o}/{x, y}

q0
a? o?

o?

x!

y!

Figure 8: Complications of quotienting in the context of alphabet extension.

IP [OD. Since our extended refinement allows us to compare MIAs with di↵er-
ent alphabets, one could aim for a generalisation of Thm. 30 where Q and P//D
may have di↵erent alphabets.

Because Q v P//D, the quotient should have a minimal alphabet in this
version, in contrast to our choice of IP//D = IP [ OD. However, this leads to1515

complications as one can see from the example in Fig. 8. A MIA Q satisfying
Q k D v P must have OQ = {x, y}, but IQ = IP \ ID = ; clearly does not
su�ce because Q is allowed to produce x or y only after o. Furthermore, Q must
see a or b to distinguish between the branches. Solutions are possible, e.g., for
IQ = {a, o} and IQ = {b, o}; a solution Q0 for {a, o} is also shown in Fig. 8,1520

where transitions to the universal state are not drawn for simplicity. It looks
like there are several maximal solutions.

Note, however, that Thm. 30 in its present form still holds for our extended
refinement preorder. This is important in practice where one would want for Q
and D to be able to communicate via new internal actions, i.e., those that are1525

hidden immediately after taking the parallel composition of Q and D. Since
only outputs can be hidden, the new actions must form a set O0 of outputs in
Q kD. Then, one proceeds by determining Q =df [P ];,O0//D. Thm. 30 implies
Q kD v [P ];,O0 , which in turn implies (Q kD)/O0 v P by Props. 22.1 and 46.

Another aspect of alphabet extension for quotienting is that we can gener-1530

alise the problem by permitting D to have actions unknown to P . A straightfor-
ward generalisation of our approach in Sec. 4 would make these actions inputs
for the quotient, but there can also be solutions to QkD v P where Q has some
new inputs of D as outputs. We leave a further investigation of these aspects
to future work.1535

7. Example

In this section we discuss an example, which demonstrates how MIA can
be applied in practice. It exercises all important operations of MIA; it also
uses nondeterminism which means that it cannot be modelled in MI [10]. The
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G:

0

1

rqst? resp! fail!

B1:

0

1

rqst1? resp1! miss!

B2:

0

1

rqst2? resp2!

Figure 9: Global specification G, local cache B1 and remote database B2.

R1,2:

(0, 0)

(1, 0)

(2, 1) (2, 2)

rqst1!, rqst2!,
resp!

rqst?

sel!

rqst1! rqst2!

R3:

0

1 2

rqst1!

resp!

resp1?

miss?

resp!

R4:

0

1 2

rqst2!

resp!

resp2?

resp!

R5:

0

1 2

miss?

fail!

resp!,
rqst2!

fbck!

rqst2!

Figure 10: Front-end requirements R1,2 (see also Fig. 7) and R3, R4, R5.

example has been checked by a simple computer tool, which has been written1540

by us and implements the MIA operations.
We consider a data server S that is composed of a front-end F and two

already existing back-ends, a local cache B1 and a remote database B2. The
server channels requests received by the front-end to (one of) the two back-ends.
Based on a global specification G of S, we wish to develop the specification of F .1545

The global specification and the back-end specifications are shown in Fig. 9.
Specification G defines the communication protocol with a client. The data

server shall wait for a request and then may return a response or, alternatively, a
failure message. Action rqst? is of must-modality because a data server makes no
sense if it cannot accept a request. Actions resp! and fail! are of may-modality1550

since refinements of G might at some stage decide to give only answer resp!
or only fail!. The local cache B1 also waits for a request and answers with
a response; optionally, it may implement a cache miss after a request. The
remote database B2 is similar to the cache but without a miss. In both cases
we have must-transitions for rqsti? and respi!, so that the acceptance of inputs1555

and issuing of answers is guaranteed.
We now develop the front-end specification F , which forwards a request to

either cache B1 or to database B2. In case of the former and a cache miss, F
may fall back to B2. To this end, we assume the following requirements for F ,
which are specified in Fig. 10:1560
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(0, 0, 0, 0, 0)

(1, 0, 0, 0, 0)

(2, 1, 0, 0, 0) (2, 2, 0, 0, 0)(0, 0, 1, 0, 0)

(0, 0, 0, 0, 1) (0, 0, 0, 0, 2)

(0, 0, 2, 0, 0)

(0, 0, 0, 1, 0)

(0, 0, 0, 2, 0)

resp!

rqst?

rqst1! rqst2!

fbck!

fail!

sel!

rqst1! rqst2!

resp1?

miss?

resp!

resp2?

rqst2!

resp!

Figure 11: Conjunction of the front-end requirements, R = R1,2 ^ R3 ^ R4 ^ R5 with the
alphabets I = {rqst, resp1, resp2,miss}, O = {resp, rqst1, rqst2, sel, fbck, fail}.

(R1,2) The front-end shall pass on a client’s request to one of the back-ends.

(R3) After forwarding a request to back-endB1, the front-end shall wait forB1’s
response and route it back to the client. Additional to the response, the
front-end shall accept a cache miss when waiting for a response.

(R4) After redirecting the request to back-end B2, the front-end shall wait1565

for B2’s response and route it back to the client.

(R5) In case of a cache miss, the front-end may fall back to the database or
fail.

Requirement R1,2 is already discussed in Sec. 5 (cf. Fig. 7). Requirement R3

states that, after forwarding a request to the cache (rqst1!), the front-end must1570

wait for a response (resp1?) or a cache miss (miss?). In case of a response
(resp1?), the response has to be routed back to the client (resp!). Require-
ment R4 is the corresponding requirement for the database back-end. Require-
ment R5 specifies that, in case of a cache miss, the request can be redirected to
the database back-end (fbck!) or the whole conversation may fail (fail!).1575

The conjunction R =df R1,2 ^ R3 ^ R4 ^ R5 is shown in Fig. 11, where
inconsistent and unreachable states are already pruned. Observe that one could
simplify R by merging states (0, 0, 0, 0, 2) wv (2, 2, 0, 0, 0).

All in all, the desired front-end specification F must guarantee that (i) the
server S obeys the global specification, (ii) S is the parallel composition of
the front-end and the two back-ends, and (iii) F satisfies all its requirements.
Formally:

S v G S = F kB1 kB2 F v R
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(0, 0, 0)

(0, 0, 1) (0, 1, 1)

(0, 1, 0)

(1, 0, 1)

(1, 0, 0)

(1, 1, 1)

(1, 1, 0)

rqst1!

rqst2!

resp!,
fail!

rqst1!

resp!,
fail!

resp!,
fail!

rqst2!

rqst2!

rqst1!

rqst2!

rqst1!

resp!,
fail!

rqst?

resp1?, miss?

rqst?

resp1?,
miss?

rqst?

resp2?

resp2?

resp2?

resp1?, miss?

resp2?

rqst?

resp1?,
miss?

Figure 12: Upper bound UF on F with the alphabets I =df {rqst, resp1, resp2,miss} and
O =df {resp, rqst1, rqst2, fail}.

Quotienting now gives us an upper bound UF on F . To satisfy the alphabet
requirements for quotienting, we first need to extend G’s alphabet with the
unknown actions O0 =df {rqst1, rqst2, resp1, resp2,miss} of B1 k B2; see the
discussion at the end of Sec. 6 and observe that these actions are indeed outputs
in the parallel composition of F with B1 kB2. Now,

UF = [G];,O0//(B1 kB2) ,

i.e., UF (see Fig. 12) is the least specific interface that composes with the back-
ends such that, after hiding of O0, they together satisfy the global specification,
as discussed in Sec. 6. Hence, overall:

(UF kB1 kB2)/O
0 v G.

Note that, in Fig. 12, we have omitted the universal state and its transitions,
labelled resp1, resp2 and miss. These transitions do not play a role in UF ^ R1580

in the next step, because the only three transitions in R with these labels are
solely combined with transitions actually shown in Fig. 12.

Thus, the front-end is specified as follows, because it also has to satisfy the
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0

1

2 34 5

6 7

8

fail!

fbck!

sel!

rqst?

rqst1! rqst2!

miss?

resp1? resp2?

resp! resp!

Figure 13: Final specification F of the front-end.

requirements given by R:
F =df UF ^R

This specification leaves the implementor as much freedom as possible. It is
shown in Fig. 13, where all unreachable and inconsistent states have already
been removed.1585

8. Conclusions and Future Work

We presented an extension of Raclet et al.’s modal interface theory MI [10]
to nondeterministic systems. To do so we resolved, for the first time properly,
the conflict between unspecified inputs being allowed in interface theories de-
rived from de Alfaro and Henzinger’s Interface Automata [4] but forbidden in1590

Modal Transition Systems [11]. To this end, we introduced a special universal
state, which enabled us to achieve compositionality (in contrast to [8]) as well
as associativity (in contrast to [10]) for parallel composition; crucially, this also
enabled a more practical support of perspective-based specification when com-
pared to [9, 12]. As another important contribution, we defined a quotienting1595

operator that permits the decomposition of nondeterministic specifications and
takes pruning in parallel composition into account (in contrast to [10]). In addi-
tion, we also introduced hiding and restriction for event scoping and disjunction
as the dual to conjunction.

We are currently exploring the utility of MIA as a behavioural type theory1600

for parallel programming languages. To this end we have enriched Google’s Go
language with such behavioural types, whereby type checking becomes refine-
ment checking [30]. Our refinement checker is implemented via a translation to
quantified boolean formulas into an SMT problem, along the lines of a similar
translation for Modal Transition Systems [31].1605

Regarding further future work, we wish to explore the choice of alphabets for
quotienting and relax the determinism requirement on divisors. We also intend
to implement our interface theory in existing formal methods tools, such as
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MICA (see http://www.irisa.fr/s4/tools/mica/), the MIO Workbench [5]
or MoTraS [32].1610
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